Edge-colorings avoiding a fixed matching with a prescribed color pattern

Carlos Hoppen ${ }^{\text {a }}$, Hanno Lefmann ${ }^{\text {b }}$
${ }^{\text {a }}$ Instituto de Matemática, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, 91509-900 Porto Alegre, Brazil
${ }^{\mathrm{b}}$ Fakultät für Informatik, Technische Universität Chemnitz, Straße der Nationen 62, D-09107 Chemnitz, Germany

A R T I CLE IN F O

Article history:

Received 12 May 2014
Accepted 22 January 2015
Available online 16 February 2015

Abstract

We consider an extremal problem motivated by a question of Erdős and Rothschild (Erdős, 1974) regarding edge-colorings of graphs avoiding a given monochromatic subgraph. An extension of this problem to edge-colorings avoiding fixed subgraphs with a prescribed coloring has been studied by Balogh (Balogh, 2006). In this work, we consider the following natural generalization of the original Erdős-Rothschild question: given a natural number r and a graph F, an r-pattern P of F is a partition of the edge set of F into r (possibly empty) classes, and an r-coloring of the edge set of a graph G is said to be (F, P)-free if it does not contain a copy of F in which the partition of the edge set induced by the coloring has a copy of P. Let $c_{r,(F, P)}(G)$ be the number of (F, P)-free r-colorings of a graph G. For large n, we maximize this number over all n-vertex graphs for a large class of patterns in matchings and we describe the graphs that achieve this maximum.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most natural extremal problems in graph theory consists in determining the largest graphs with a prescribed structure among all graphs with a given number of vertices. For instance, a simple problem in this direction is to decide, among all triangle-free n-vertex graphs, which is

[^0]the graph with the maximum number of edges. This question was answered by Mantel [11] at the beginning of the twentieth century, giving rise to an active branch of research. More generally, for any fixed graph F, we say that a graph G is F-free if it does not contain F as a subgraph. Finding the maximum number of edges among all F-free n-vertex graphs, and determining the class of n-vertex graphs that achieve this number is now known as the Turán problem associated with F, which was solved for complete graphs in [14]. The maximum number of edges in an F-free n-vertex graph is denoted by ex (n, F) and the n-vertex graphs that achieve this bound are called F-extremal. This is one of the most popular problems in extremal graph theory and there is a vast literature related with it (for more information and recent developments, we refer to Keevash [8], and the references therein).

In connection with a question of Erdős and Rothschild [3], several authors have investigated the following related problem. Instead of looking for F-free n-vertex graphs, they were interested in edge colorings of graphs on n vertices such that every color class is F-free. (We observe that edge colorings in this work are not necessarily proper.) More precisely, given an integer $r \geq 1$ and a graph F containing at least one edge, one considers the function that associates, with a graph G, the number $c_{r, F}(G)$ of r-colorings of the edge set of G for which there is no monochromatic copy of F. The problem consists of finding $c_{r, F}(n)$, the maximum of $c_{r, F}(G)$ over all n-vertex graphs G. For instance, if there is a single color available, we must have $c_{1, F}(n)=1$, with equality $c_{1, F}(n)=c_{1, F}(G)$ for every graph G on n vertices that does not contain a copy of F. For simplicity, we assume that the colors lie in the set $\{1, \ldots, r\}$. The main motivation for considering this function is its connection with ex (n, F) :

$$
\begin{equation*}
c_{r, F}(n) \geq r^{\operatorname{ex}(n, F)} \quad \text { for every } n \geq 2 \tag{1}
\end{equation*}
$$

This holds trivially, as any r-coloring of the edges of an F-extremal n-vertex graph is F-free, and there are precisely $r^{\text {ex }(n, F)}$ such colorings. Moreover, with the Regularity Lemma [13], one can show that, for $r \in\{2,3\}$ and n sufficiently large, we have

$$
c_{r, F}(n) \leq r^{\operatorname{ex}(n, F)+o\left(n^{2}\right)}
$$

for graphs F with ex $(n, F)=\Theta\left(n^{2}\right)$.
Erdős and Rothschild were interested in instances for which (1) is tight, and they conjectured that this was the case for $r=2$ and $F=K_{3}$, which was proved by Yuster [15]. Since then, the function $c_{r, F}(n)$ has been studied for several instances of graphs, such as complete graphs [1,12,15], odd cycles [1], matchings [6], paths and stars [7]. The following turns out to be a common feature of several instances of F, such as complete graphs, odd cycles and matchings (but not of paths and stars): when the number of colors is either two or three, inequality (1) holds with equality for n sufficiently large. Moreover, the class of (r, F)-extremal configurations, that is, the class of n-vertex graphs G such that $c_{r, F}(G)=c_{r, F}(n)$, is equal to the class of F-extremal graphs if n is sufficiently large; however, the F-extremal graphs are not (r, F)-extremal when at least four colors are used.

More recently, Balogh [2] has considered a variant of this problem. For a fixed graph F, he studied r-colorings of the edge set of a graph G that do not contain a copy of F colored according to a fixed coloring. For instance, if $r=3, F=K_{3}$ is a triangle and \hat{F} is a coloring of K_{3} in which each of the three colors appears exactly once, we are looking for 3 -colorings of the edges with no rainbow triangles. Let $c_{r, \hat{F}}(n)$ be the maximum number of r-colorings of an n-vertex graph with no copy of F colored as \hat{F}. Balogh has proved that, for any coloring \hat{F} of the complete graph $F=K_{\ell}$ with two colors, we have $c_{2, \hat{F}}(n)=2^{\operatorname{ex}\left(n, K_{\ell}\right)}$ for n sufficiently large. However, this picture changes if we consider the previous example of 3-colorings with no rainbow triangles: Balogh noticed that, if we color the complete graph K_{n} with any two of the three colors available, there is no rainbow copy of K_{3}, which gives at least $3 \cdot 2^{\binom{n}{2}}-3 \gg 3^{\operatorname{ex}\left(n, K_{3}\right)}=3^{n^{2} / 4+o\left(n^{2}\right)}$ distinct ($\left.K_{3}, P\right)$-free colorings. (As usual, we say that two positive functions g, f satisfy $g(n) \ll f(n)$ if $\lim _{n \rightarrow \infty} g(n) / f(n)=0$.)

In this paper we consider a related problem, which deals with r-colorings of the edge set of a graph G that do not contain a copy of F colored according to a fixed pattern. An r-pattern P of a graph F is a partition of the edge set of F into r (possibly empty) classes, and an r-coloring of the edge set of G is said to be (F, P)-free if it does not contain a copy of F in which the partition of the edge set induced by the coloring has a copy of P. Again, given a graph G, one may consider the number $c_{r,(F, P)}(G)$ of (F, P)-free r-colorings of G, while $c_{r,(F, P)}(n)$ is defined as the maximum of this quantity over all

https://daneshyari.com/en/article/4653431

Download Persian Version:
https://daneshyari.com/article/4653431

Daneshyari.com

[^0]: E-mail addresses: choppen@ufrgs.br (C. Hoppen), Lefmann@Informatik.TU-Chemnitz.de (H. Lefmann).
 http://dx.doi.org/10.1016/j.ejc.2015.01.011
 0195-6698/© 2015 Elsevier Ltd. All rights reserved.

