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Let £(G) denote the expected number of colors used in a uniformly
random proper n-coloring of G. The above inequality can be
interpreted as saying that w(G) > w(0,), where O, is the empty
graph on n nodes. This conjecture was proved by F.M. Dong, who
in fact showed that,
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for all ¢ > n.There are examples showing that this inequality is not
true for all ¢ > 2. In this paper, we show that the above inequality
holds for all ¢ > 36D%/?, where D is the largest degree of G. It is also

shown that the above inequality holds true for all ¢ > 2 when G is
a claw-free graph.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The chromatic polynomial is an important algebraic object studied in the field of graph coloring.
For a graph G = (V, E) with vertex set V and edge setE,leto : V — {1, ..., q} be a map. The map
o is said to be a proper g-coloring of graph G if for every edge in E the endpoints of the edge have
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distinct images under o. Let P¢(q) denote the total number of proper g-colorings of G. It is well known
that Pg(q) is a polynomial in q and is known as the chromatic polynomial. In fact,

Po(q) = Y (=1 1g"®, (1)
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where C(E’) denotes the number of connected components of (V, E’). The sum goes over all subsets
E’ C E of the edge set E. This is easily seen using the inclusion-exclusion principle as is explained in
Section 2.

Properties of the chromatic polynomial have been studied extensively. For example, the log-
concavity of the chromatic polynomial (proved for its coefficients [ 14]) is well studied [4,3,17]. There
has also been a lot of interest in understanding the roots of the chromatic polynomial [6,5,16,2,13].

Bartels and Welsh [1] studied a Markov chain on colorings, which would help approximate w(G),
the expected number of colors in a uniformly random proper n-coloring on G. They proved that,
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where n = |V/|.

They conjectured that on the set of graphs on n nodes, u is minimized when G is the empty graph,
0,, on n vertices, that is,
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Rewriting this, the conjecture states:
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They point out that the inequality
n
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may not hold true for all ¢ > 2, as was shown by the following example due to Colin McDiarmid. Let
G = Ky, the complete bipartite graph with partitions of size n each with n > 10. Then,
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This conjecture came to be dubbed as the ‘shameful conjecture’ and was proved 5 years later by
Dong [12]. In fact, Dong proved the stronger result that inequality (5) holds true forallqg > n — 1.In
particular, this implies,
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Before that Seymour [15] also showed that,

Po(n) _ 685
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