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a b s t r a c t

We introduce a binarymatroidM[IAS(G)] associated with a looped
simple graph G.M[IAS(G)] classifies G up to local equivalence, and
determines the delta-matroid and isotropic system associatedwith
G. Moreover, a parametrized form of its Tutte polynomial yields the
interlace polynomials of G.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A graph G = (V (G), E(G)) consists of a finite vertex-setV (G) and a finite edge-set E(G). Each edge is
incident on one or two vertices; an edge incident on only one vertex is a loop. The two vertices incident
on a non-loop edge are neighbors, and the open neighborhood of a vertex v is N(v) = {neighbors of v}.
A graph in which different edges can be distinguished by their vertex-incidences is a looped simple
graph, and a simple graph is a looped simple graph with no loop.

In this paper we are concerned with properties of looped simple graphs motivated by two sets
of ideas. The first set of ideas is the theory of the principal pivot transform (PPT) over GF(2). PPT
over arbitrary fields was introduced more than 50 years ago by Tucker [39]; see also the survey of
Tsatsomeros [38]. According to Geelen [25], PPT transformations applied to the mod-2 adjacency
matrices of looped simple graphs are generated by two kinds of elementary PPT operations, non-simple
local complementations with respect to looped vertices and edge pivots with respect to edges
connecting unlooped vertices. The second set of ideas is the theory of 4-regular graphs and their Euler
circuits, initiated more than 40 years ago by Kotzig [28]. Kotzig proved that all the Euler circuits of
a 4-regular graph are obtained from any one using κ-transformations. If a 4-regular graph is directed
in such a way that every vertex has indegree 2 and outdegree 2, then Kotzig [28], Pevzner [30] and
Ukkonen [40] showed that all of the graph’s directed Euler circuits are obtained from any one through
certain combinations of κ-transformations called transpositions by Arratia, Bollobás and Sorkin [2–4].
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Bouchet [8] and Rosenstiehl and Read [31] introduced a simple graph associatedwith any Euler circuit
of a connected 4-regular graph, the alternance graph or interlacement graph; an equivalent link relation
matrix was defined by Cohn and Lempel [21] in the context of the theory of permutations. These
authors showed that the effects of κ-transformations and transpositions on interlacement graphs are
given by simple local complementations and edge pivots, respectively.

In the late 1980s, Bouchet introduced two new kinds of combinatorial structures associated with
these two theories. On the one hand are the delta-matroids [9], some of which are associated with
looped simple graphs. The fundamental operation of delta-matroid theory is a way of changing
one delta-matroid into another, called twisting. Two looped simple graphs are related through PPT
operations if and only if their associated delta-matroids are related through twisting. On the other
hand are the isotropic systems [10,12], all of which are associated with fundamental graphs. Two
isotropic systems are strongly isomorphic if and only if they share fundamental graphs. Moreover, two
simple graphs are related through simple local complementations if and only if they are fundamental
graphs of strongly isomorphic isotropic systems. Properties of isotropic systems were featured in the
proof of Bouchet’s famous ‘‘forbidden minors’’ characterization of circle graphs [14].

The purpose of this paper is to introduce a binary matroid constructed in a natural way from
the adjacency matrix of a looped simple graph G; we call it the isotropic matroid of G, in honor of
Bouchet’s isotropic systems. Let G be a looped simple graph with adjacency matrix A(G). That is, A(G)
is the |V (G)| × |V (G)| matrix with entries in GF(2) given by: a diagonal entry is 1 if and only if the
corresponding vertex is looped, and an off-diagonal entry is 1 if and only if the corresponding vertices
are adjacent. Let IAS(G) denote the |V (G)| × (3 |V (G)|)matrix

IAS(G) = (I | A(G) | I + A(G)).

Definition 1. The isotropic matroid of G is the binary matroidM[IAS(G)] represented by IAS(G).

Let W (G) denote the ground set of M[IAS(G)], i.e., the set of columns of IAS(G). If v ∈ V (G) then
there are three columns of IAS(G) corresponding to v: one in I , one in A(G), and one in I + A(G).
For notational convenience, and to indicate the connection with our work on interlace polynomials
[33,36,37], we use vφ to denote the column of I corresponding to v, vχ to denote the column of A(G)
corresponding to v, and vψ to denote the column of I + A(G) corresponding to v. The set {vφ, vχ , vψ }

is the vertex triple corresponding to v.
Notice that if G2 is obtained from G1 by loop complementation at a vertex v then there is an

isomorphism between the isotropic matroids M[IAS(G1)] and M[IAS(G2)] that simply interchanges
the vχ and vψ elements of W (G1) and W (G2). We say isomorphisms like this, which map vertex
triples to vertex triples, are compatible with the partitions of W (G1) and W (G2) into vertex triples, or
simply compatible. In Section 4 we observe that edge pivots and local complementations also induce
compatible isomorphisms of isotropic matroids. Moreover, every compatible isomorphism is induced
by some sequence of edge pivots, local complementations and loop complementations. It follows
that compatible isomorphisms of isotropic matroids classify simple graphs and looped simple graphs
under various combinations of these operations. For instance:

Theorem 2. Let G1 and G2 be simple graphs. Then the following conditions are equivalent:

1. Up to isomorphism, G2 can be obtained from G1 using simple local complementations.
2. There is a compatible isomorphism M[IAS(G1)] ∼= M[IAS(G2)].

Theorem 3. Let G1 and G2 be looped simple graphs. Then the following conditions are equivalent:

1. Up to isomorphism, G2 can be obtained from G1 using local complementations and loop complementa-
tions.

2. There is a compatible isomorphism M[IAS(G1)] ∼= M[IAS(G2)].

Theorem 4. Let G1 and G2 be simple graphs. Then the following conditions are equivalent:

1. Up to isomorphism, G2 can be obtained from G1 using edge pivots.
2. There is a compatible isomorphismM[IAS(G1)] ∼= M[IAS(G2)], which mapsψ elements toψ elements.
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