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a b s t r a c t

Generalizing a result in the theory of finite fields we prove that,
apart from a couple of exceptions that can be classified, for any
elements a1, . . . , am of the cyclic group of order m, there is a
permutation π such that 1aπ(1) + · · · + maπ(m) = 0.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The starting point of the present paper is the following result of Gács, Héger, Nagy and Pálvölgyi.

Theorem 1.1 ([7]). Let {a1, a2, . . . , ap} be a multiset in the finite field GF(p), p a prime. Then after a
suitable permutation of the indices, either


i iai = 0, or a1 = a2 = · · · = ap−2 = a, ap−1 = a+b, ap =

a − b for field elements a and b, b ≠ 0.

A similar result using a slightly different terminologywas obtained by Vinatier [10] under the extra
assumption that a1, . . . , ap, when considered as nonnegative integers, satisfy a1 + · · · + ap = p. The
former result can be extended to arbitrary finite fields in the following sense.

Theorem 1.2 ([7]). Let {a1, a2, . . . , aq} be a multiset in the finite field GF(q), where q is a prime power.
There are no distinct field elements b1, b2, . . . , bq such that


i aibi = 0 if and only if after a suitable

permutation of the indices, a1 = a2 = · · · = aq−2 = a, aq−1 = a+ b, aq = a− b for some field elements
a and b, b ≠ 0.

This theorem can be reformulated in the language of finite geometry and also has an application
about the range of polynomials over finite fields. For more details, see [7].

Our aim is to find a different kind of generalization, more combinatorial in nature, which refers
only to the group structure. First we extend the result to cyclic groups of odd order.

✩ This research was supported by Hungarian National Scientific Research Funds (OTKA) grant 81310.
E-mail addresses: nagyzoltanlorant@gmail.com, nagyzoli@cs.elte.hu.

http://dx.doi.org/10.1016/j.ejc.2014.03.010
0195-6698/© 2014 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.ejc.2014.03.010
http://www.elsevier.com/locate/ejc
http://www.elsevier.com/locate/ejc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejc.2014.03.010&domain=pdf
mailto:nagyzoltanlorant@gmail.com
mailto:nagyzoli@cs.elte.hu
http://dx.doi.org/10.1016/j.ejc.2014.03.010


Z.L. Nagy / European Journal of Combinatorics 41 (2014) 68–78 69

Theorem 1.3. Let {a1, a2, . . . , am} be a multiset in the Abelian group Zm = Z/mZ, where m is odd.
Then after a suitable permutation of the indices, either


i iai = 0, or a1 = a2 = · · · = am−2 = a,

am−1 = a + b, am = a − b for elements a and b, (b,m) = 1.

The situation is somewhat different if the order of the group is even. In this case we have to deal
with two types of exceptional structures. The following statements are easy to check.

Proposition 1.4. Let m be an even number represented as m = 2kn, where n is odd.

(i) If a multiset M = {a1, a2, . . . , am} of Zm consists of elements having the same odd residue c mod 2k,
then M has no permutation for which


i iai = 0 holds.

(ii) If M = {a, a, . . . , a + b, a − b} mod m, where a is even and (b,m) = 1 holds, then M has no
permutation for which


i iai = 0 holds.

These two different kind of structures we call homogeneous and inhomogeneous exceptional multisets,
respectively.

Theorem 1.5. Let M = {a1, a2, . . . , am} be a multiset in the Abelian group Zm, m even. If M is not
an exceptional multiset as defined in Proposition 1.4, then after a suitable permutation of the indices

i iai = 0 holds.

The presented results might be extended in different directions. Onemay ask whether there exists
a permutation of the elements of a given multiset M of Zm (consisting of m elements), for which the
sum


i iai is equal to a prescribed element ofZm. This question is related to a conjecture of Britnell and

Wildon, see [4, p. 20], which can be reformulated as follows. Given amultisetM = {a1, a2, . . . , am} of
Zm, all elements ofZm are admitted as the value of the sum

m
i=1 iaπ(i) for an appropriate permutation

π from the symmetric group Symm, unless one of the following holds:

• M = {a, . . . , a, a + b, a − b},
• there exists a prime divisor p of m such that all elements ofM are the same mod p.

Our result may in fact be considered as a major step towards the proof of their conjecture, which
would provide a classification of values of determinants associated to special types of matrices. When
m is a prime, the conjecture is an immediate consequence of Theorem 1.1 and Lemma 2.2(ii). Indeed,
if only one value was admitted, then the multiset would consist of a single element m times. On the
other hand, if there was an admitted element w ≠ 0, all nonzero elements would be admitted via
Lemma 2.2(ii). Thus the value 0 is the crucial one, which was investigated in Theorem 1.1.

As for another direction, these questions are alsomeaningful for arbitrary finite Abelian groups, but
to find the exact characterization appears to be a difficult task in general. For example, in the Klein
group Z2

2, the multiset consisting of all different group elements has no zero ‘permutational sum’,
whereas all other multisets do have. Meanwhile in the group Z3

2, all multisets have a permutational
sum which is zero.

As it was briefly explained in [7], the problem has a connection to Snevily’s conjecture [9], solved
recently by Arsovski [3], namely the following one. Given an Abelian group G of odd orderm. Subsets
{a1, . . . , al} and {b1, . . . , bl} of G are also given, where l ≤ m. Does there exist a permutation π in the
symmetric group Syml such that a1 + bπ(1), . . . , al + bπ(l) are pairwise distinct? It would be natural
to try to adapt the techniques which were successful for Snevily’s problem, but our problems are
apparently more difficult. In order to prove Theorems 1.1 and 1.2, we had to replace the relatively
simple approach of Alon [2] by a more delicate application of the Combinatorial Nullstellensatz [1,8]
and we do not see how Theorem 1.3, for example, could be obtained by the method of [5].

The paper is organized as follows. In Section 2, we collect several simple observations that are used
frequently throughout the paper and sketch our proof strategy. Section 3 is devoted to the proof of
Theorem 1.3. In Section 4 we will verify Theorem 1.5 for some particular cases, whose proofs do not
exactly fit in the general framework (andmay be skipped at a first reading). The complete proof, which
is more or less parallel to that of Theorem 1.3, is carried out in Section 5.
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