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a b s t r a c t

Let V be a symplectic space over a finite commutative ring R
and let GSpR(V ) be the symplectic graph over R. In this work, we
show that it is arc transitive and determine the chromatic number.
Moreover, if R is a finite local ring, we obtain its automorphism
group, and the chromatic number and the automorphism group of
each subconstituent.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The general symplectic graph associatedwith nonsingular alternatematrices over a field is studied
by Tang and Wan [11] as a new family of strongly regular graphs. Their work used orthogonal
complements and matrix theory on symmetric bilinear forms over a finite field. Meemark and
Prinyasart [9] introduced the symplectic graph GSpR(V ) for a symplectic space V over a commutative
ring R. They showed that their symplectic graph is arc transitive when R = Zpn , p is an odd prime
and n ≥ 1. There are some articles influenced by this definition such as [7,8,4,3]. Mostly, the work
was on strong regularity, automorphism groups, vertex and arc transitivities, chromatic numbers and
subconstituents of symplectic graphs over a finite field, modulo pn, and modulo pq, where p and q are
primes and n ≥ 1. Recently, the authors [10] studied those topics for symplectic graphs over a finite
local ring and obtained results parallel to [11,9,7,8,3]. They applied a combinatorial approach similar
to [9] and some basic properties of a local ring.

In what follows, we work on the symplectic graph over a finite commutative ring. We show that
it is arc transitive and determine the chromatic number. Moreover, if R is a finite local ring, we
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obtain its automorphism group, and the chromatic number and the automorphism group of each
subconstituent. We shall repeatedly refer the results in three major articles, namely, [10,11,6].

The paper is organized as follows. Basic results of symplectic graphs over a finite commutative ring
are presented in Section 2. Next, in Section 3, we give results on the chromatic number for symplectic
graphs over a finite local ring. Automorphisms and arc transitivities are discussed in Section 4. This
section also includes the fractional chromatic number and the chromatic number of symplectic graphs
over a finite commutative ring (Theorem 4.9). We study the subconstituents of symplectic graphs in
the final section.

2. Symplectic graphs

Let R be a commutative ring and let V be a free R-module of rank 2ν, where ν ≥ 1. Assume
that we have a function β: V × V → R which is R-bilinear, β(x⃗, x⃗) = 0 for all x⃗ in V and the
R-module morphism from V to V ∗

= HomR(V , R) given by x⃗ → β(·, x⃗) is an isomorphism. We call
the pair (V , β) a symplectic space. A vector x⃗ in V is said to be unimodular if there is an f in V ∗ with
f (x⃗) = 1; equivalently, if x⃗ = α1b⃗1 + · · · + α2ν b⃗2ν , where {b⃗1, . . . , b⃗2ν} is a basis for V , then the ideal
(α1, . . . , α2ν) = R. If x⃗ is unimodular, then the line Rx is a free R-direct summand of rank one.

A hyperbolic pair

x⃗, y⃗


is a pair of unimodular vectors in V with the property that β


x⃗, y⃗


= 1.

The module H = Rx⃗ ⊕ Ry⃗ is called a hyperbolic plane. Let (V , β) be a symplectic space. An R-module
automorphism σ on V is an isometry on V if β(σ(x⃗), σ (y⃗)) = β


x⃗, y⃗


for all x⃗, y⃗ ∈ V . The group of

isometries on V is called the symplectic group of (V , β) over R and denoted by SpR(V ). Define the graph
GSpR(V ) with vertex set the set of lines {Rx⃗ : x⃗ is a unimodular vector in V } and with adjacency given
by

Rx⃗ is adjacent to Ry⃗ if and only if β(x⃗, y⃗) ∈ R×.

Here, R× denotes the group of invertible elements in R. We call GSpR(V ), the symplectic graph of (V , β)
over R.

A local ring is a commutative ring which has a unique maximal ideal. Note that for a local ring R,
its unique maximal ideal is given byM = R r R× and we call the field R/M , the residue field of R.

Let R be a finite commutative ring. It is well known that any finite commutative ring is a product
of finite local rings (Theorem 8.7 of [1]) and we have completely studied our graphs over a finite local
ring (see Section 2 of [10]). Write

R = R1 × R2 × · · · × Rt

as a direct product of finite local rings Ri, i = 1, 2, . . . , t . Consider V = R2ν , a free R-module of rank
2ν, where ν ≥ 1. We have the canonical 1–1 correspondence

x⃗ = (x1, x2, . . . , x2ν)
ϕ

→ ((x(j)
1 )tj=1, (x

(j)
2 )tj=1, . . . , (x

(j)
2ν)

t
j=1).

Note that if x⃗, y⃗ ∈ V , then this correspondence induces the symplectic map β on V by

β(x⃗, y⃗) = β(((x(j)
1 )tj=1, (x

(j)
2 )tj=1, . . . , (x

(j)
2ν)

t
j=1), ((y

(j)
1 )tj=1, (y

(j)
2 )tj=1, . . . , (y

(j)
2ν)

t
j=1))

= (β1(x⃗(1), y⃗(1)), β2(x⃗(2), y⃗(2)), . . . , βt(x⃗(t), y⃗(t)))

=

 ν
i=1

(x(1)
i y(1)

ν+i − x(1)
ν+iy

(1)
i ),

ν
i=1

(x(2)
i y(2)

ν+i − x(2)
ν+iy

(2)
i ), . . . ,

ν
i=1

(x(t)
i y(t)

ν+i − x(t)
ν+iy

(t)
i )


,

where x⃗(j)
= (x(j)

1 , x⃗(j)
2 , . . . , x⃗(j)

2ν) ∈ V (j)
:= R2ν

j and (V (j), βj) is a symplectic space of Rj of rank 2ν, for
all j = 1, 2, . . . , t . Since R×

= R×

1 × R×

2 × · · · × R×

t , we have

β(x⃗, y⃗) ∈ R×
⇔

ν
i=1

(x(j)
i y(j)

ν+i − x(j)
ν+iy

(j)
i ) ∈ R×

j for all j ∈ {1, 2, . . . , t}. (2.1)
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