European Journal of Combinatorics 42 (2014) 107-111

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

Sign patterns of rational matrices with large rank

European Journal of Combinatorics

Yaroslav Shitov

National Research University Higher School of Economics, 20 Myasnitskaya Ulitsa, Moscow 101000, Russia

ARTICLE INFO

Article history: Received 6 December 2013 Accepted 2 June 2014 Available online 22 June 2014

ABSTRACT

Let *A* be a real matrix. The term rank of *A* is the smallest number *t* of lines (that is, rows or columns) needed to cover all the nonzero entries of *A*. We prove a conjecture of Li et al. stating that, if the rank of *A* exceeds t - 3, there is a rational matrix with the same sign pattern and rank as those of *A*. We point out a connection of the problem discussed with the Kapranov rank function of tropical matrices, and we show that the statement fails to hold in general if the rank of *A* does not exceed t - 3.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of constructing a matrix over a given ordered field with specified sign pattern and rank deserved a significant amount of attention in recent publications, see [2] and references therein. The present paper establishes a connection of this problem with that of computing certain rank functions arisen from tropical geometry. We prove the conjecture on sign patterns of rational matrices formulated in [2], and we present the examples showing the optimality of our result.

2. Preliminaries

The following notation is used throughout our paper. By $U^{m \times n}$ we denote the set of all *m*-by-*n* matrices with entries from a set *U*, by $A_{ij} \in U$ we denote an entry of a matrix $A \in U^{m \times n}$. By $U_{(i)}$ we denote the *i*th row of *U*, and we call a *line* of a matrix any of its columns or rows.

A field *R* is called *ordered* if, for some subset $P \subset R$ closed under addition and multiplication, the sets *P*, -P, and {0} form a partition of *R*. The elements of *P* are then called *positive*, and those from

http://dx.doi.org/10.1016/j.ejc.2014.06.001

E-mail address: yaroslav-shitov@yandex.ru.

^{0195-6698/© 2014} Elsevier Ltd. All rights reserved.

-P negative. The sign pattern of a matrix $A \in R^{m \times n}$ is the matrix $S = \mathscr{S}(A) \in \{+, -, 0\}^{m \times n}$ defined as $S_{ij} = +$ if A_{ij} is positive, $S_{ij} = -$ if A_{ij} is negative, and $S_{ij} = 0$ if $A_{ij} = 0$. The minimum rank of a sign pattern S with respect to R is the minimum of the ranks of matrices B over R satisfying $\mathscr{S}(B) = S$.

There are a significant number of recent publications devoted to the study of the minimal ranks of sign patterns (see [2] and references therein), and our paper aims to prove a conjecture formulated in [2]. This conjecture relates the minimal rank of a pattern to a concept of the *term rank* of a matrix, which is defined as the smallest number of lines needed to include all the nonzero elements of that matrix. The classical *König's theorem* states the term rank of a matrix *A* equals the maximum number of nonzero entries of *A* no two of which belong to the same line, so the term rank of a sign pattern *S* can be thought of as the maximum of the ranks of matrices *C* over *R* satisfying $\mathscr{S}(C) = S$. Now we can formulate the conjecture by Li et al. relating the concepts of minimum and term ranks for sign pattern matrices.

Conjecture 2.1 ([2, Conjecture 4.2]). Assume that S is a sign pattern matrix with term rank equal to t, and let r be the minimum rank of S over the reals. If $r \ge t - 2$, then the minimum rank of S over the rationals is r as well.

In Section 3 we develop a combinatorial technique which allows to prove Conjecture 2.1. In Section 4 we establish the connection of the problem discussed with the Kapranov rank function of Boolean matrices introduced in [1]. We also make the use of matroid theory to prove the optimality of the bound in Conjecture 2.1 by showing that its statement fails to hold in general if r is less than t - 2.

3. Proof of the result

We start with two easy observations helpful for further considerations.

Observation 3.1. Multiplying a row of a real matrix A by a nonzero number will not change the minimal ranks of its sign pattern.

Proof. Trivial.

Observation 3.2. Let r and t be, respectively, the minimum and term ranks of a sign pattern S with respect to an ordered field R. Then, for any integer $h \in [r, t]$, there is a matrix over R which has rank h and sign pattern S.

Proof. Changing a single entry produces a matrix whose rank differs by at most 1 from that of the initial matrix.

The following lemma gives a useful description of the rank of a block matrix. We say that a linear subspace $S \subset \mathbb{R}^d$ is *rational* if S has a basis consisting of vectors that have rational coordinates only.

Lemma 3.3. Let $V_1 \in \mathbb{Q}^{p \times (p-1)}$ and $V_2 \in \mathbb{Q}^{(q-1) \times q}$ be rational matrices that have ranks p-1 and q-1, respectively. Then the set W of all $W \in \mathbb{R}^{p \times q}$ for which the matrix $U = \begin{pmatrix} W & V_1 \\ V_2 & 0 \end{pmatrix}$ has rank p + q - 2 is a rational subspace.

Proof. Note that rational elementary transformations on the first *p* rows or first *q* columns of *U* cannot break the property of *W* to be a rational subspace. So we can assume that V_1 and V_2 differ from the identity matrices, respectively, by adding the *p*th zero row and the *q*th zero column. In this case, *W* consists of those matrices *W* which satisfy $W_{pq} = 0$. \Box

We need another lemma to prove Conjecture 2.1. By [x] we denote the integer part of a real x.

Lemma 3.4. Assume that a vector $a = (a_1, ..., a_n)$ and a matrix $B \in \mathbb{R}^{n \times 2}$ satisfy aB = (00). Assume that every entry of the first column of *B* is either 0 or 1. Define, for integer N > 0, the n-by-2 matrix C = C(N) by $C_{ij} = [B_{ij}N]$. Then, for any sufficiently large *N*, there is a rational vector x = x(N) satisfying xC = (00) and $x(N) \rightarrow a$ as $N \rightarrow \infty$.

Download English Version:

https://daneshyari.com/en/article/4653547

Download Persian Version:

https://daneshyari.com/article/4653547

Daneshyari.com