Sign patterns of rational matrices with large rank

CrossMark

Yaroslav Shitov
National Research University Higher School of Economics, 20 Myasnitskaya Ulitsa, Moscow 101000, Russia

ARTICLE INFO

Article history:

Received 6 December 2013
Accepted 2 June 2014
Available online 22 June 2014

Abstract

Let A be a real matrix. The term rank of A is the smallest number t of lines (that is, rows or columns) needed to cover all the nonzero entries of A. We prove a conjecture of Li et al. stating that, if the rank of A exceeds $t-3$, there is a rational matrix with the same sign pattern and rank as those of A. We point out a connection of the problem discussed with the Kapranov rank function of tropical matrices, and we show that the statement fails to hold in general if the rank of A does not exceed $t-3$.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of constructing a matrix over a given ordered field with specified sign pattern and rank deserved a significant amount of attention in recent publications, see [2] and references therein. The present paper establishes a connection of this problem with that of computing certain rank functions arisen from tropical geometry. We prove the conjecture on sign patterns of rational matrices formulated in [2], and we present the examples showing the optimality of our result.

2. Preliminaries

The following notation is used throughout our paper. By $U^{m \times n}$ we denote the set of all m-by- n matrices with entries from a set U, by $A_{i j} \in U$ we denote an entry of a matrix $A \in U^{m \times n}$. By $U_{(i)}$ we denote the i th row of U, and we call a line of a matrix any of its columns or rows.

A field R is called ordered if, for some subset $P \subset R$ closed under addition and multiplication, the sets $P,-P$, and $\{0\}$ form a partition of R. The elements of P are then called positive, and those from

[^0]$-P$ negative. The sign pattern of a matrix $A \in R^{m \times n}$ is the matrix $S=f(A) \in\{+,-, 0\}^{m \times n}$ defined as $S_{i j}=+$ if $A_{i j}$ is positive, $S_{i j}=-$ if $A_{i j}$ is negative, and $S_{i j}=0$ if $A_{i j}=0$. The minimum rank of a sign pattern S with respect to R is the minimum of the ranks of matrices B over R satisfying $f(B)=S$.

There are a significant number of recent publications devoted to the study of the minimal ranks of sign patterns (see [2] and references therein), and our paper aims to prove a conjecture formulated in [2]. This conjecture relates the minimal rank of a pattern to a concept of the term rank of a matrix, which is defined as the smallest number of lines needed to include all the nonzero elements of that matrix. The classical König's theorem states the term rank of a matrix A equals the maximum number of nonzero entries of A no two of which belong to the same line, so the term rank of a sign pattern S can be thought of as the maximum of the ranks of matrices C over R satisfying $s(C)=S$. Now we can formulate the conjecture by Li et al. relating the concepts of minimum and term ranks for sign pattern matrices.

Conjecture 2.1 ([2, Conjecture 4.2]). Assume that S is a sign pattern matrix with term rank equal to t, and let r be the minimum rank of S over the reals. If $r \geqslant t-2$, then the minimum rank of S over the rationals is r as well.

In Section 3 we develop a combinatorial technique which allows to prove Conjecture 2.1. In Section 4 we establish the connection of the problem discussed with the Kapranov rank function of Boolean matrices introduced in [1]. We also make the use of matroid theory to prove the optimality of the bound in Conjecture 2.1 by showing that its statement fails to hold in general if r is less than $t-2$.

3. Proof of the result

We start with two easy observations helpful for further considerations.
Observation 3.1. Multiplying a row of a real matrix A by a nonzero number will not change the minimal ranks of its sign pattern.
Proof. Trivial.
Observation 3.2. Let r and t be, respectively, the minimum and term ranks of a sign pattern S with respect to an ordered field R. Then, for any integer $h \in[r, t]$, there is a matrix over R which has rank h and sign pattern S.

Proof. Changing a single entry produces a matrix whose rank differs by at most 1 from that of the initial matrix.

The following lemma gives a useful description of the rank of a block matrix. We say that a linear subspace $S \subset \mathbb{R}^{d}$ is rational if S has a basis consisting of vectors that have rational coordinates only.

Lemma 3.3. Let $V_{1} \in \mathbb{Q}^{p \times(p-1)}$ and $V_{2} \in \mathbb{Q}^{(q-1) \times q}$ be rational matrices that have ranks $p-1$ and $q-1$, respectively. Then the set W of all $W \in \mathbb{R}^{p \times q}$ for which the matrix $U=\left(\begin{array}{cc}W & V_{1} \\ V_{2} & 0\end{array}\right)$ has rank $p+q-2$ is a rational subspace.
Proof. Note that rational elementary transformations on the first p rows or first q columns of U cannot break the property of \mathcal{W} to be a rational subspace. So we can assume that V_{1} and V_{2} differ from the identity matrices, respectively, by adding the p th zero row and the q th zero column. In this case, w consists of those matrices W which satisfy $W_{p q}=0$.

We need another lemma to prove Conjecture 2.1. By $[x]$ we denote the integer part of a real x.
Lemma 3.4. Assume that a vector $a=\left(a_{1}, \ldots, a_{n}\right)$ and a matrix $B \in \mathbb{R}^{n \times 2}$ satisfy $a B=(00)$. Assume that every entry of the first column of B is either 0 or 1 . Define, for integer $N>0$, the n-by- 2 matrix $C=C(N)$ by $C_{i j}=\left[B_{i j} N\right]$. Then, for any sufficiently large N, there is a rational vector $x=x(N)$ satisfying $x C=(00)$ and $x(N) \rightarrow a$ as $N \rightarrow \infty$.

https://daneshyari.com/en/article/4653547

Download Persian Version:

https://daneshyari.com/article/4653547

Daneshyari.com

[^0]: E-mail address: yaroslav-shitov@yandex.ru.
 http://dx.doi.org/10.1016/j.ejc.2014.06.001
 0195-6698/© 2014 Elsevier Ltd. All rights reserved.

