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Received 24 April 2013 complex number field can always be expressed in terms of given
Accepted 30 May 2014 polynomials {p,(t)}, where p,(t) is of degree n, we extend the or-
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sented. The construction of the Abel type identities using the gen-
eralized Riordan arrays is also discussed.
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1. Introduction

In the recent literature, special emphasis has been given to the concept of Riordan arrays associated
with power series, which are a generalization of the well-known Pascal triangle. Riordan arrays are
infinite, lower triangular matrices defined by the generating function (GF) of their columns. They form
a group, called the Riordan group (cf. Shapiro, Getu, Woan, and Woodson [32]). Some of the main
results on the Riordan group and its application to combinatorial sums and identities can be found
in Sprugnoli [33,34], on subgroups of the Riordan group in Peart and Woan [24] and Shapiro [29], on
some characterizations of Riordan matrices in Rogers [25], Merlini, Rogers, Sprugnoli, and Verri [21],
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and He and Sprugnoli [17], and on many interesting related results in Cheon, Kim, and Shapiro [2,3],
Deutsch, Ferrari, and Rinaldi [6], Gould and He [8], He [9], He, Hsu, and Shiue [12], Hsu [18],
Nkwanta [23], Shapiro [30,31], Wang and Wang [35], and so forth.

More formally, let us consider the set of formal power series (f.p.s.) # = R[t]]; the order of
f@®) e F,f@t) = Z,fiofktk (fe € R), is the minimal number r € N such that f, # 0; #, is the
set of formal power series of order r. It is known that F is the set of invertible f.p.s. and F; is the
set of compositionally invertible f.p.s., that is, the f.p.s. f (t) for which the compositional inverse f*(t)
exists such that f(f*(t)) = f*(f(t)) = t.Letd(t) € Fo and h(t) € F1; the pair (d(t), h(t)) defines
the (proper) Riordan array D = (dp i)n.ken = (d(t), h(t)) having

dnx = [£"1d(OR() (1)

or, in other words, having d(t)h(t)¥ as the GF whose coefficients make-up the entries of column k.
It is immediate to show that the usual row-by-column product of two Riordan arrays is also a
Riordan array:

(d1(6), hi(£)) - (da(t), ha(0)) = (d1(t)dz (M1 (1)), ha(hy(1))). (2)

The Riordan array I = (1, t) is everywhere 0 except that it contains all 1’s on the main diagonal; it is
easily seen that I acts as an identity for this product, thatis, (1, t)-(d(t), h(t)) = (d(t), h(t))-(1,t) =
(d(t), h(t)).From these facts, we deduce a formula for the inverse Riordan array:

1 1 N
(d(®), h(t)™ = (d(h*(t))’ h (t)) (3)

where h*(t) is the compositional inverse of h(t). In this way, the set R of proper Riordan arrays is a
group.
Let d(t) € Fo and h(t) € F1.Then the polynomials u,(x) (n = 0, 1, 2, ...) defined by the GF

d(t)e"® = Z Up ()" (4)

n>0

are called Sheffer-type polynomials with ug(x) = 1. The set of all Sheffer-type polynomial sequences
{u,(x) = [t"]d(t)e"©} with an operation, “umbral composition” (cf. [26] and [28]), forms a group
called the Sheffer group. [ 12] presents the isomorphism between the Riordan group and Sheffer group.

Rogers [25] introduced the concept of the A-sequence for Riordan arrays; Merlini, Rogers, Sprugnoli,
and Verri [21] introduced the related concept of the Z-sequence and showed that these two concepts,
together with the element d; o, completely characterize a proper Riordan array. He and Sprugnoli [17]
presented the characterization of Riordan arrays by means of the A- and Z-sequences for some
subgroups of & and the products and the inverses of Riordan arrays.

In [10], one of the authors defined the generalized Sheffer-type polynomial sequences as follows.

Definition 1.1 ([10]). Let d(t), U(t), and h(t) be any formal power series over the real number field R
or complex number field C with d(0) = 1, U(0) = 1, h(0) = 0, and h’'(0) # 0. Then the polynomials
up(x) (n=0,1,2,...)defined by the GF

d(OURh(D) =) " (0)t" (5)

n>0

are called the generalized Sheffer-type polynomials associated with (d(t), h(t))y). Accordingly,
u, (D) with D = d/dt is called Sheffer-type differential operator of degree n associated with (d(t),
h(t))u . Particularly, ug(D) = I is the identity operator due to ug(x) = 1.

One of the authors [9] shows that for every U(t) there exists a one-to-one correspondence between
(d(t), h(t)) and {u,(x)}, and the collection, Py, of all polynomlal sequences {un (x)} with respect to
V() = ano a,t", defined by (5), forms a group (Py, #) under the operation #, defined by

Pa OGO} = {rm(®) = D s s tase =Y PneGes/ar, n > ki,
k=0 L=k
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