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a b s t r a c t

We prove that a Cayley graph can be embedded in the Euclidean
plane without accumulation points of vertices if and only if it is
the 1-skeleton of a Cayley complex that can be embedded in the
plane after removing redundant simplices. We also give a charac-
terisation of these Cayley graphs in term of group presentations,
and deduce that they can be effectively enumerated.
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1. Introduction

The study of groups that have Cayley graphs embeddable in the Euclidean plane R2, called planar
groups, has a tradition starting in 1896 with Maschke’s characterisation of the finite ones. Among the
infinite planar groups, those that admit a flat Cayley complex, defined below, have received a lot of
attention. They are important in complex analysis as they include the discontinuous groups ofmotions
of the Euclidean andhyperbolic plane.Moreover, they are closely related to surface groups [19, Section
4.10]. These groups are now well understood due to the work of Macbeath [15], Wilkie [18], and
others; see [19] for a survey.3 Planar groups that have no flat Cayley complex are harder to analyse,
and they are the subject of on-going research [4–6,8,7].

All groups, Cayley graphs and Cayley complexes in this paper are finitely generated. Our first
result is

Theorem 1.1. A planar Cayley graph of a group Γ is accumulation-free if and only if it is the 1-skeleton
of a flat Cayley complex of Γ .

1 Tel.: +44 2476150900.
2 Partly supported by FWF grant P-19115-N18.
3 In [19] the term Cayley complex is not used but it is implicit in Theorems 4.5.6 and 6.4.7 that a group admits a flat Cayley

complex if and only if it is a planar discontinuous group.
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Here, a Cayley complex is flat if it can be embedded in R2 after removing redundant 2-simplices;
see Section 2.1 for the precise definition. A planar graph is said to be accumulation-free, if it admits
an embedding in R2 such that the images of its vertices have no accumulation point. The study of a
planar graph is often simplified if one knows that the graph is accumulation-free; examples range
from structural graph-theory [2] to percolation theory [14] and the study of spectral properties [13].
A further example is Thomassen’s Theorem 5.2 below, which becomes false in the non-accumulation-
free case. accumulation-free graphs can be characterised by a condition similar to that of Kuratowski’s;
see [9]. Accumulation-free embeddings also appear with other names in the literature, most notably
‘‘locally finite’’.

Theorem 1.1 implies that a group has a flat Cayley complex if and only if it has an accumulation-
free Cayley graph, a fact thatmight be known to experts, and it should not be too hard to derive it from
the results of [19]. Theorem 1.1 however strengthens this assertion into a theorem about all planar
Cayley graphs, not just their groups. Since a single group can have a large variety of planar Cayley
graphs (see Section 4 for some examples), it is in principle harder to prove results that hold for all
planar Cayley graphs than proving the corresponding result for their groups. However, our proof is
elementary and self-contained, avoiding the geometric machinery of [19].

We also prove that every accumulation-free Cayley graph admits an embedding the facial walks of
which are preserved by the action of the group; see Corollary 3.6.

Finally, we derive a further characterisation of the accumulation-free Cayley graphs, and so by
Theorem 1.1 also of the groups that admit a flat Cayley complex, bymeans of group presentations.We
introduce a special kind of presentation, called a facial presentation, which is motivated by geometric
intuition and can be easily recognised by an algorithm, and use it to obtain a further characterisation
of the class of accumulation-free Cayley graphs:

Corollary 1.2. A Cayley graph admits an accumulation-free embedding if and only if it admits a facial
presentation.

This implies that the accumulation-free Cayley graphs can be effectively enumerated (Corol-
lary 5.4).

We prove Theorem 1.1 in Section 3. In Section 4 we examine accumulation-freeness as a group-
theoretical invariant. Finally, in Section 5 we introduce facial presentations and prove Corollary 1.2.

2. Preliminaries

We will follow the terminology of [3] for graph-theoretical terms and that of [1,10] for group-
theoretical ones.

Let us recall some standard definitions used in this paper. We say that a graph G is k-connected
if G − X is connected for every set X ⊆ V with |X | < k. A component of G is a maximal connected
subgraph of G.

A walk in G is an alternating sequence v0e0v1e1 · · · ek−1vk of vertices and edges in G such that
ei = {vi, vi+1} for all i < k. If v0 = vk, the walk is closed. If the vertices in a walk are all distinct,
it is called a path (many authors use the word ‘path’ to denote a walk in our sense).

A 1-way infinite path is called a ray, a 2-way infinite path is a double ray. Two rays contained in a
graph G are equivalent if no finite set of edges separates them. The corresponding equivalence classes
of rays are the ends of G.

By an embedding of a graph G we mean a topological embedding of the corresponding 1-complex
in the Euclidean plane R2; in simpler words, an embedding is a drawing of the graph in the plane with
no two edges crossing. A graph is planar if it admits an embedding. A plane graph is a (planar) graph
endowed with a fixed embedding.

A face of an embedding σ : G → R2 is a component of R2
\ σ(G). The boundary of a face F is the

set of vertices and edges of G that are mapped by σ to the closure of F . A path, or walk, in G is called
facial with respect to σ if it is contained in the boundary of some face of σ .

One of ourmain tools will be the (finitary) cycle spaceCf (G) of a graph G = (V , E), which is defined
as the vector space over Z2 (the field of two elements) consisting of those subsets of E such that can
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