

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

European Journal of Combinatorics

A. Boussaïri^a, A. Chaïchaâ^a, P. Ille^b

^a Faculté des Sciences Aïn Chock, Département de Mathématiques et Informatique, Km 8 route d'El Jadida, BP 5366 Maarif, Casablanca, Maroc ^b Institut de Mathématiques de Luminy, CNRS – UMR 6206, 163 avenue de Luminy, Case 907,

13288 Marseille Cedex 09, France

ARTICLE INFO

Article history: Available online 9 August 2013

ABSTRACT

Given a digraph G = (V, A), a subset X of V is an interval of G if for $a, b \in X$ and $v \in V \setminus X$, $(a, v) \in A$ if and only if $(b, v) \in A$, and similarly for (v, a) and (v, b). For instance, \emptyset , V and $\{v\}$, $v \in V$, are intervals of G called trivial. A digraph is indecomposable if all its intervals are trivial. Let G = (V, A) be a digraph. Given $v \in V, v$ is an indecomposability vertex of G if $G[V \setminus \{v\}]$ is indecomposable. The indecomposability graph $\mathbb{I}(G)$ of G is defined on V as follows. Given $v \neq w \in V$, $\{v, w\}$ is an edge of $\mathbb{I}(G)$ if $G[V \setminus \{v, w\}]$ is indecomposable. The following is proved for an indecomposable digraph G = (V, A). For every digraph H = (V, B), if G and H have the same indecomposability vertices and if $d_{\mathbb{I}(G)}(v) = d_{\mathbb{I}(H)}(v)$ for each $v \in V$, then H is indecomposable. We also study other types of indecomposability recognition.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A digraph *G* consists of a finite and nonempty *vertex* set *V*(*G*) and an *arc* set *A*(*G*), where an arc is an ordered pair of distinct vertices. Such a digraph is denoted by (V(G), A(G)) or simply by (V, A). For example, given a finite and nonempty set *V*, $(V, (V \times V) \setminus \{(v, v) : v \in V\})$ is the *complete* digraph on *V*. Given a digraph G = (V, A), with each nonempty subset *X* of *V*, we associate the *subdigraph* $G[X] = (X, A \cap (X \times X))$ of *G* induced by *X*. Given a proper subset *X* of *V*, $G[V \setminus X]$ is also denoted by G - X, and by G - v whenever $X = \{v\}$. Two interesting types of digraphs are tournaments and

[☆] This work was supported by the France-Morocco cooperation CNRS/CNRST 2007.

E-mail addresses: aboussairi@hotmail.com (A. Boussaïri), chaichaa@hotmail.com (A. Chaïchaâ), ille@iml.univ-mrs.fr (P. Ille).

^{0195-6698/\$ –} see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.ejc.2013.07.009

symmetric digraphs. A digraph *G* is a *tournament* if $|A(G) \cap \{(v, w), (w, v)\}| = 1$ for any $v \neq w \in V$. On the other hand, a digraph *G* is symmetric if $|A(G) \cap \{(v, w), (w, v)\}| = 0$ or 2 for any $v \neq w \in V$. A *graph G* is defined by a finite and nonempty vertex set V(G) and an edge set E(G), where an edge is an unordered pair of distinct vertices. Such a graph is denoted by (V(G), E(G)) or simply by (V, E). For example, given a finite and nonempty set V, (V, \emptyset) is the *empty* graph on V whereas $(V, {V \choose 2})$ is the *complete* graph. With a partition $\{V_1, V_2\}$ of V, where $V_1 \neq \emptyset$ and $V_2 \neq \emptyset$, we associate the *complete* bipartite graph $(V, \{\{v_1, v_2\} : v_1 \in V_1, v_2 \in V_2\})$. Let *G* be a graph. Given $v \in V(G)$, the *neighbourhood* $N_G(v)$ of v in *G* is the family of vertices w of *G* such that $\{v, w\} \in E(G)$. The cardinality of $N_G(v)$ is called the *degree* of v and is denoted by $d_G(v)$. We say that v is an *isolated* vertex of *G* whenever $d_G(v) = 0$. With each nonempty subset X of V(G), we associate the subgraph $G[X] = (X, E(G) \cap {X \choose 2})$ of *G* induced by X. A nonempty subset C of V(G) is a *connected component* of *G* if for any $x \in C$ and $y \in V(G) \setminus C$, $\{x, y\} \notin E(G)$ and if for any $x \neq y \in C$, there is a sequence $x_0 = x, \ldots, x_n = y$ of elements of C such that $\{x_i, x_{i+1}\} \in E(G)$ for $0 \le i \le n - 1$.

Given digraphs *G* and *H*, a bijection *f* from *V*(*G*) onto *V*(*H*) is an *isomorphism* from *G* onto *H* provided that for any $x, y \in V(G)$, $(x, y) \in A(G)$ if and only if $(f(x), f(y)) \in A(H)$. Two digraphs are then *isomorphic* if there exists an isomorphism from one onto the other. Let *G* be a digraph. For $x \neq y \in V(G)$ and for $u \neq v \in V(G)$, we write $[x, y] \equiv [u, v]$ if the function $\{x, y\} \longrightarrow \{u, v\}$, defined by $x \mapsto u$ and $y \mapsto v$, is an isomorphism from $G[\{x, y\}]$ onto $G[\{u, v\}]$; otherwise, we write $[x, y] \not\equiv [u, v]$.

Given a digraph *G*, a subset *I* of *V*(*G*) is an *interval* [3,8] (or an *autonomous* set [5,9,12] or a *clan* [4] or a *homogeneous* set [2,6] or a *module* [15]) of *G* provided that for any *a*, $b \in I$ and $v \in V(G) \setminus I$, we have $[a, v] \equiv [b, v]$. For instance, \emptyset , *V*(*G*) and $\{v\}$, where $v \in V(G)$, are intervals of *G* called *trivial* intervals. A digraph is *indecomposable* [3,8,14] (or *prime* [2] or *primitive* [4]) if all its intervals are trivial; otherwise, it is *decomposable*. Given a digraph *G*, an *indecomposability* vertex of *G* is an element *v* of *V*(*G*) such that G - v is indecomposable. We denote by $\pounds(G)$ the set of the indecomposability vertices of *G*. An indecomposable digraph is *critical* if it does not admit indecomposability vertices. Critical and indecomposable digraphs were characterized by Schmerl and Trotter [14].

Given two digraphs G = (V, A) and H = (V, B), we consider an integer k such that 0 < k < |V|. We say that G and H are $\{-k\}$ -hypomorphic if G - X and H - X are isomorphic for every subset X of V with |X| = k. A digraph G is $\{-k\}$ -reconstructible if any digraph $\{-k\}$ -hypomorphic to G is isomorphic to it. Ulam [17] conjectured that a symmetric digraph with at least three vertices is $\{-1\}$ -reconstructible. Then, Pouzet [1, Problem 24] asked whether a digraph is $\{-k\}$ -reconstructible. It follows from results of Lopez and Rauzy [10,11] and of Pouzet [13] that a digraph is $\{-k\}$ -reconstructible for k > 4. For k = 1, Stockmeyer [16] built an infinite family of non $\{-1\}$ -reconstructible tournaments. However, all these tournaments are indecomposable. So the conjecture is still open for decomposable digraphs. Ille [7] showed that two $\{-1\}$ -hypomorphic digraphs G = (V, A) and H = (V, B), with $|V| \ge 11$, are both indecomposable or not. He introduced the indecomposability graph as follows. Given a digraph G, the *indecomposability* graph of G is the graph $\mathbb{I}(G)$ defined on the set V(G) in the following way. Given $v \neq w \in V$, $\{v, w\} \in E(\mathbb{I}(G))$ if $G - \{v, w\}$ is indecomposable. Clearly, two $\{-1\}$ -hypomorphic digraphs share the same indecomposability vertices. However, for any finite and nonempty set V, there are digraphs G = (V, A) and H = (V, B) with the same indecomposability vertices, such that G is indecomposable and H is decomposable. It suffices to consider a critical and indecomposable digraph defined on V and the complete digraph on V. The above argumentation leads us to the following natural definition of the indecomposability recognition. First, two digraphs are said to be *equivalent* under indecomposability or simply equivalent if both are indecomposable or not. Second, given two digraphs G = (V, A) and H = (V, B), consider an integer k such that 0 < k < |V|. We say that G and H are $\{-k\}$ -equivalent if G - X and H - X are equivalent for every subset X of V with |X| = k. A digraph G is then said to be $\{-k\}$ -recognizable if any digraph $\{-k\}$ -equivalent to G is equivalent to it. Similarly, we define the \mathcal{F} -recognition of a digraph G for a family \mathcal{F} of integers m such that -|V(G)| < m < 0. Notice that two digraphs G and H are $\{-1\}$ -equivalent if and only if $\mathcal{I}(G) = \mathcal{I}(H)$. They are $\{-2\}$ -equivalent if and only if $\mathbb{I}(G) = \mathbb{I}(H)$.

As observed above, critical and indecomposable digraphs are not $\{-1\}$ -recognizable. In Section 4, we give a counter-example to $\{-2\}$ -recognition. In Section 5, we study the indecomposability vertices

Download English Version:

https://daneshyari.com/en/article/4653740

Download Persian Version:

https://daneshyari.com/article/4653740

Daneshyari.com