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a b s t r a c t

A closure system with the anti-exchange axiom is called a convex
geometry. One geometry is called a sub-geometry of the other if
its closed sets form a sublattice in the lattice of closed sets of
the other. We prove that convex geometries of relatively convex
sets in n-dimensional vector space and their finite sub-geometries
satisfy the n-Carousel Rule, which is the strengthening of the
n-Carathéodory property. We also find another property, that is
similar to the simplex partition property and independent of
2-Carousel Rule, which holds in sub-geometries of 2-dimensional
geometries of relatively convex sets.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A closure system A = (A, −), i.e. a set Awith a closure operator −
: 2A

→ 2A defined on A, is called
a convex geometry (see [3]), if it is a zero-closed space (i.e. ∅ = ∅) and it satisfies the anti-exchange
axiom, i.e.

x ∈ X ∪ {y} and x ∉ X imply that y ∉ X ∪ {x} for all x ≠ y in A and all closed X ⊆ A.

A convex geometry A = (A, −) is called finite, if set A is finite.
Very often, a convex geometry is given by its collection of closed sets. There is a convenient

description of those collections of subsets of a given finite set A, which are, in fact, the closed sets
of a convex geometry on A: if F ⊆ 2A satisfies

(1) ∅ ∈ F ;
(2) X ∩ Y ∈ F , as soon as X, Y ∈ F ;
(3) X ∈ F and X ≠ A implies X ∪ {a} ∈ F , for some a ∈ A \ X ,

then F represents the collection of closed sets of a convex geometry A = (A, −).
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A reader can be referred to [8,9] for the further details of combinatorial and lattice-theoretical
aspects of finite convex geometries.

For convex geometries A = (A, −) and B = (B, τ ), one says that A is a sub-geometry of B, if there
is a one-to-one map φ of closed sets of A to closed sets of B such that φ(X ∩ Y ) = φ(X) ∩ φ(Y ),
and φ(X ∪ Y ) = τ(φ(X) ∪ φ(Y )), where X, Y ⊆ A, X = X, Y = Y . In other words, the lattice of
−-closed subsets of A is a sublattice of the lattice of τ -closed sets of B. When geometries A and B are
defined on the same set X = A = B, we also call B a strong extension of A. Extensions of finite convex
geometries were considered in [4,3], the more systematic treatment of extensions of finite lattices
was given in [15].

Given any class L of convex geometries, we will call it universal, if an arbitrary finite convex
geometry is a sub-geometry of some geometry in L.

One of the main results in [3] proves that a specially designed class of convex geometries AL is
universal. Namely, AL consists of convex geometries of the form Sp(A), each of which is built on a
carrier set of an algebraic and dually algebraic lattice A and whose closed sets are all complete lower
subsemilattices of A closed with respect to taking joins of non-empty chains. At the same time, a
subclass ALf of all finite geometries in AL cease to be universal, see [1,3,17].

In this paper, we want to consider another conveniently designed class of convex geometries, in
fact, an infinite hierarchy of classes.

Given a set of points A in Euclidean n-dimensional space Rn, one defines a closure operator
−

: 2A
→ 2A on A as follows: for any Y ⊆ A, Y = ch(Y ) ∩ A, where ch stands for the convex hull.

One easily verifies that such an operator satisfies the anti-exchange axiom. Thus, (A, −) is a convex
geometry, which also will be denoted as Co(Rn, A). We will call such convex geometry a geometry of
relatively convex sets (assuming that these are convex sets ‘‘relative’’ to A). The convex geometries of
relatively convex sets were studied in [2,7,13,18].

For any geometry C = Co(Rm, A), call n ∈ N a dimension of C, if n is the smallest number such that
C could be represented as Co(Rn, A), for appropriate A ⊆ Rn. In particular, n ≤ m, and n ≤ p − 1, if A
is a finite non-empty set of cardinality p > 1.

Let Cn be the class of convex geometries of relatively convex sets of dimension ≤ n. It is known
that none of Cn is universal, due to the n-Carathéodory property that holds on any sub-geometry of
geometry from Cn (see, for example, [7]), but fails on any geometry of dimension n + 1.

In Section 2, we introduce a stronger property called the n-Carousel Rule and show that it holds
on sub-geometries of Cn. It allows to build, in Section 3, a series of finite convex geometries Kn such
that Kn satisfies the n-Carathéodory property, but cannot be a sub-geometry of any geometry in Cn.
On the other hand, Kn is a sub-geometry of some geometry in Cn+1.

In Section 4 we also introduce the so-called Edge Carousel Rule, which is a slight modification of
the simplex partition property from [14]. We prove that, similar to the 2-Carousel Rule, this property
holds in all sub-geometries in C2, and we give examples to demonstrate that the Edge Carousel Rule
is independent of the 2-Carousel Rule.

This raises the question of whether these two properties characterize finite sub-geometries of C2.
More generally, we would like to find the description of finite sub-geometries of Cn, for arbitrary
n. This approach may be helpful in tackling a problem raised in [3]: whether every finite convex
geometry is a sub-geometry of C = Co(Rm, A), for some m and finite A. We conclude the paper with
Section 5, where we discuss the open problems with more detail.

2. The Carathéodory property and the Carousel Rule

We recall that a convex geometry (A, −) satisfies the n-Carathéodory property, if x ∈ S, S ⊆ A,
implies x ∈ {a0, . . . , an} for some a0, . . . , an ∈ S. Equivalently, a0 can be taken to be any pre-specified
element of S: if x ∈ S, S ⊆ A and a0 ∈ S, then x ∈ {a0, . . . , an} for some a1, . . . , an ∈ S.

Proposition 2.1 ([13, Lemma 3.2], [7, Proposition 25]). For any n ∈ N and A ⊆ Rn, convex geometry
Co(Rn, A) satisfies the n-Carathéodory property.

Our aim is to formulate a stronger property, which we call the n-Carousel Rule, extending to
arbitrary finite dimensions the 2-Carousel Rule introduced in [5].
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