Contents lists available at ScienceDirect



**European Journal of Combinatorics** 

journal homepage: www.elsevier.com/locate/ejc

# Representing finite convex geometries by relatively convex sets



European Journal of Combinatorics

### Kira Adaricheva

Yeshiva University, 245 Lexington Ave., New York, NY 10016, USA

#### ARTICLE INFO

Article history: Available online 9 August 2013

#### ABSTRACT

A closure system with the anti-exchange axiom is called a convex geometry. One geometry is called a sub-geometry of the other if its closed sets form a sublattice in the lattice of closed sets of the other. We prove that convex geometries of relatively convex sets in *n*-dimensional vector space and their finite sub-geometries satisfy the *n*-Carousel Rule, which is the strengthening of the *n*-Carathéodory property. We also find another property, that is similar to the simplex partition property and independent of 2-Carousel Rule, which holds in sub-geometries of 2-dimensional geometries of relatively convex sets.

© 2013 Elsevier Ltd. All rights reserved.

#### 1. Introduction

A closure system  $\mathbf{A} = (A, \bar{})$ , i.e. a set A with a closure operator  $\bar{} : 2^A \to 2^A$  defined on A, is called a *convex geometry* (see [3]), if it is a zero-closed space (i.e.  $\overline{\emptyset} = \emptyset$ ) and it satisfies *the anti-exchange axiom*, i.e.

 $x \in \overline{X \cup \{y\}}$  and  $x \notin X$  imply that  $y \notin \overline{X \cup \{x\}}$  for all  $x \neq y$  in A and all closed  $X \subseteq A$ .

A convex geometry  $\mathbf{A} = (A, -)$  is called finite, if set *A* is finite.

Very often, a convex geometry is given by its collection of closed sets. There is a convenient description of those collections of subsets of a given finite set A, which are, in fact, the closed sets of a convex geometry on A: if  $\mathcal{F} \subseteq 2^A$  satisfies

(1) 
$$\emptyset \in \mathcal{F}$$
;

(2)  $X \cap Y \in \mathcal{F}$ , as soon as  $X, Y \in \mathcal{F}$ ;

(3)  $X \in \mathcal{F}$  and  $X \neq A$  implies  $X \cup \{a\} \in \mathcal{F}$ , for some  $a \in A \setminus X$ ,

then  $\mathcal{F}$  represents the collection of closed sets of a convex geometry  $\mathbf{A} = (A, -)$ .

E-mail address: adariche@yu.edu.

<sup>0195-6698/\$ –</sup> see front matter 0 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.ejc.2013.07.012

A reader can be referred to [8,9] for the further details of combinatorial and lattice-theoretical aspects of finite convex geometries.

For convex geometries  $\mathbf{A} = (A, {}^{-})$  and  $\mathbf{B} = (B, \tau)$ , one says that  $\mathbf{A}$  is a sub-geometry of  $\mathbf{B}$ , if there is a one-to-one map  $\phi$  of closed sets of  $\mathbf{A}$  to closed sets of  $\mathbf{B}$  such that  $\phi(X \cap Y) = \phi(X) \cap \phi(Y)$ , and  $\phi(\overline{X \cup Y}) = \tau(\phi(X) \cup \phi(Y))$ , where  $X, Y \subseteq A, \overline{X} = X, \overline{Y} = Y$ . In other words, the lattice of  $\overline{\phantom{a}}$ -closed subsets of  $\mathbf{A}$  is a sublattice of the lattice of  $\tau$ -closed sets of  $\mathbf{B}$ . When geometries  $\mathbf{A}$  and  $\mathbf{B}$  are defined on the same set X = A = B, we also call  $\mathbf{B}$  a strong extension of  $\mathbf{A}$ . Extensions of finite convex geometries were considered in [4,3], the more systematic treatment of extensions of finite lattices was given in [15].

Given any class  $\mathcal{L}$  of convex geometries, we will call it *universal*, if an arbitrary finite convex geometry is a sub-geometry of some geometry in  $\mathcal{L}$ .

One of the main results in [3] proves that a specially designed class of convex geometries  $\mathcal{AL}$  is universal. Namely,  $\mathcal{AL}$  consists of convex geometries of the form  $S_p(A)$ , each of which is built on a carrier set of an algebraic and dually algebraic lattice A and whose closed sets are all complete lower subsemilattices of A closed with respect to taking joins of non-empty chains. At the same time, a subclass  $\mathcal{AL}_f$  of all *finite* geometries in  $\mathcal{AL}$  cease to be universal, see [1,3,17].

In this paper, we want to consider another conveniently designed class of convex geometries, in fact, an infinite hierarchy of classes.

Given a set of points A in Euclidean n-dimensional space  $\mathbb{R}^n$ , one defines a closure operator  $\overline{\phantom{a}}: 2^A \rightarrow 2^A$  on A as follows: for any  $Y \subseteq A, \overline{Y} = ch(Y) \cap A$ , where ch stands for the convex hull. One easily verifies that such an operator satisfies the anti-exchange axiom. Thus,  $(A, \overline{\phantom{a}})$  is a convex geometry, which also will be denoted as **Co**( $\mathbb{R}^n$ , A). We will call such convex geometry *a geometry of relatively convex sets* (assuming that these are convex sets "relative" to A). The convex geometries of relatively convex sets were studied in [2,7,13,18].

For any geometry  $\mathbf{C} = \mathbf{Co}(\mathbb{R}^m, A)$ , call  $n \in \mathbb{N}$  *a dimension* of  $\mathbf{C}$ , if *n* is the smallest number such that  $\mathbf{C}$  could be represented as  $\mathbf{Co}(\mathbb{R}^n, A)$ , for appropriate  $A \subseteq \mathbb{R}^n$ . In particular,  $n \leq m$ , and  $n \leq p - 1$ , if *A* is a finite non-empty set of cardinality p > 1.

Let  $C_n$  be the class of convex geometries of relatively convex sets of dimension  $\leq n$ . It is known that none of  $C_n$  is universal, due to the *n*-Carathéodory property that holds on any sub-geometry of geometry from  $C_n$  (see, for example, [7]), but fails on any geometry of dimension n + 1.

In Section 2, we introduce a stronger property called the *n*-Carousel Rule and show that it holds on sub-geometries of  $C_n$ . It allows to build, in Section 3, a series of finite convex geometries  $\mathbf{K}_n$  such that  $\mathbf{K}_n$  satisfies the *n*-Carathéodory property, but cannot be a sub-geometry of any geometry in  $C_n$ . On the other hand,  $\mathbf{K}_n$  is a sub-geometry of some geometry in  $C_{n+1}$ .

In Section 4 we also introduce the so-called *Edge Carousel Rule*, which is a slight modification of *the simplex partition property* from [14]. We prove that, similar to the 2-Carousel Rule, this property holds in all sub-geometries in  $C_2$ , and we give examples to demonstrate that the Edge Carousel Rule is independent of the 2-Carousel Rule.

This raises the question of whether these two properties characterize finite sub-geometries of  $C_2$ . More generally, we would like to find the description of finite sub-geometries of  $C_n$ , for arbitrary n. This approach may be helpful in tackling a problem raised in [3]: whether every finite convex geometry is a sub-geometry of  $\mathbf{C} = \mathbf{Co}(\mathbb{R}^m, A)$ , for some m and finite A. We conclude the paper with Section 5, where we discuss the open problems with more detail.

#### 2. The Carathéodory property and the Carousel Rule

We recall that a convex geometry (A, -) satisfies the *n*-Carathéodory property, if  $x \in \overline{S}$ ,  $S \subseteq A$ , implies  $x \in \overline{\{a_0, \ldots, a_n\}}$  for some  $a_0, \ldots, a_n \in S$ . Equivalently,  $a_0$  can be taken to be any pre-specified element of S: if  $x \in \overline{S}$ ,  $S \subseteq A$  and  $a_0 \in S$ , then  $x \in \overline{\{a_0, \ldots, a_n\}}$  for some  $a_1, \ldots, a_n \in S$ .

**Proposition 2.1** ([13, Lemma 3.2], [7, Proposition 25]). For any  $n \in \mathbb{N}$  and  $A \subseteq \mathbb{R}^n$ , convex geometry **Co**( $\mathbb{R}^n$ , A) satisfies the n-Carathéodory property.

Our aim is to formulate a stronger property, which we call the *n*-Carousel Rule, extending to arbitrary finite dimensions the 2-Carousel Rule introduced in [5].

Download English Version:

## https://daneshyari.com/en/article/4653742

Download Persian Version:

https://daneshyari.com/article/4653742

Daneshyari.com