

Contents lists available at SciVerse ScienceDirect

European Journal of Combinatorics

Generic rectangulations

Nathan Reading

Department of Mathematics, North Carolina State University, Raleigh, NC, USA

ARTICLE INFO

Article history:
Received 31 May 2011
Received in revised form
10 November 2011
Accepted 10 November 2011
Available online 11 January 2012

ABSTRACT

A rectangulation is a tiling of a rectangle by a finite number of rectangles. The rectangulation is called generic if no four of its rectangles share a single corner. We initiate the enumeration of generic rectangulations up to combinatorial equivalence by establishing an explicit bijection between generic rectangulations and a set of permutations defined by a pattern-avoidance condition analogous to the definition of the twisted Baxter permutations.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The main characters in this paper are tilings of a rectangle by finitely many rectangles. A *cross* in such a tiling is a point which is a corner of four distinct tiles. Fixing a rectangle *S* and considering the space of all tilings of *S* by *n* rectangles with a uniform probability measure, the set of tilings having one or more crosses has measure zero. Thus we call a tiling *generic* if it has no crosses.

We consider generic tilings up to the natural combinatorial equivalence relation which we now describe. We orient S so that its edges are vertical and horizontal. A rectangle U in a tiling R is below a rectangle V if the top edge of U intersects the bottom edge of V (necessarily in a line segment rather than in a point). Similarly, U is left of V if the right edge of U intersects the left edge of V. A tiling V of a rectangle V is combinatorially equivalent to a tiling V of a rectangle V if there is a bijection from the rectangles of V to the rectangles of V that exactly preserves the relations "below" and "left of". A generic rectangulation is the equivalence class of a generic tiling. We will often blur the distinction between generic rectangulations (i.e. equivalence classes) and equivalence class representatives, in particular specifying an equivalence class by describing a specific tiling.

Our main result is a bijection between generic rectangulations with n rectangles and a class of permutations in S_n that we call 2-clumped permutations. These are the permutations that avoid the patterns 3-51-2-4, 3-51-4-2, 2-4-51-3, and 4-2-51-3, in the notation of Babson and Steingrímsson [5], which is explained in Section 2. The author's counts of generic rectangulations, for small n, are shown in Table 1.

Table 1The number of generic rectangulations with *n* rectangles.

n	Generic rectangulations
1	1
2	2
3	6
4	24
5	116
6	642
7	3,938
8	26,194
9	186,042
10	1,395,008
11	10,948,768
12	89,346,128
13	754,062,288
14	6,553,942,722
15	58,457,558,394
16	533,530,004,810
17	4,970,471,875,914
18	47,169,234,466,788
19	455,170,730,152,340
20	4,459,456,443,328,824
21	44,300,299,824,885,392
22	445,703,524,836,260,400
23	4,536,891,586,511,660,256
24	46,682,404,846,719,083,048
25	485,158,560,873,624,409,904
26	5,089,092,437,784,870,584,576
27	53,845,049,871,942,333,501,408

We define *k*-clumped permutations in Section 2. For now, to place the 2-clumped permutations in context, we note that the 1-clumped permutations are the *twisted Baxter permutations*, which are in bijection with the better-known *Baxter permutations*. Baxter permutations are also relevant to the combinatorics of rectangulations. Indeed, Baxter permutations are in bijection [1,19] with the *mosaic floorplans* considered in the VLSI (Very Large Scale Integration) circuit design literature [13]. Mosaic floorplans are certain equivalence classes of generic rectangulations. (A similar result linking equivalence classes of generic rectangulations to pattern-avoiding permutations is given in [4].) In light of results of [2], the bijection from Baxter permutations to mosaic floorplans can be rephrased as a bijection to a subclass of the generic rectangulations that we call *diagonal rectangulations*, which figure prominently in this paper.

The symbol G_n will denote the set of 2-clumped permutations. Let $gRec_n$ be the set of generic rectangulations with n rectangles. The bijection from G_n to $gRec_n$ is defined as the restriction of a map $\gamma: S_n \to gRec_n$. We show that γ is surjective and that its fibers are the congruence classes of a lattice congruence on the weak order on S_n . We do not prove directly that the fibers of γ define a congruence. Instead, we recognize the fibers as the classes of a congruence arising as one case of a construction from [17], where lattice congruences on the weak order are used to construct sub Hopf algebras of the Malvenuto–Reutenauer Hopf algebra of permutations. The results of [17] show that the 2-clumped permutations are a set of congruence class representatives. Thus the restriction of γ is a bijection from G_n to $gRec_n$.

Note added in proof

After this paper was accepted, the author became aware of a substantial literature studying generic rectangulations under the name *rectangular drawings*. This literature includes some results on asymptotic enumeration as well as computations of the exact cardinality of $gRec_n$ for many values of n. See, for example, [3,11,14]. In particular, the main result of this paper answers an open question posed in [3, Section 5].

Download English Version:

https://daneshyari.com/en/article/4653768

Download Persian Version:

https://daneshyari.com/article/4653768

Daneshyari.com