

Contents lists available at SciVerse ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

Maximum size of a planar graph with given degree and even diameter

S.A. Tishchenko

Université Pierre et Marie Curie, Paris 6, Equipe Combinatoire et Optimisation - Case 189, 4 Place Jussieu Paris 75252 Cedex 05, France

ARTICLE INFO

Article history:
Available online 23 November 2011

ABSTRACT

We offer the exact solution of the degree–diameter problem for planar graphs in the case of even diameter 2d and large degree $\Delta \geq 6(12d+1)$. New graph examples are constructed improving the lower bounds for $\Delta > 5$.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the degree-diameter problem restricted to planar graphs. We look for the largest number of vertices $p(\Delta, D)$ in a planar graph with maximum degree Δ and even diameter D=2d. Hell and Seyffarth [3] have computed $p(\Delta, 2)=[3\Delta/2]+1$ and proved that this value is exact for $\Delta \geq 8$. Fellows, Hell, and Seyffarth have also found [1] rather rough upper bounds $p(\Delta, 2d)=(12d+3)(2\Delta^d+1)$ for d>1, $\Delta \geq 4$. To this end they have applied the Lipton and Tarjan separator theorem [4]. Later [2], they have constructed plane graphs proving the lower bound

$$p(\Delta, 2d) = \frac{(3\Delta - 4)\Delta(\Delta - 1)^{d-1} - 4}{2(\Delta - 2)}.$$

At the same time they emphasized "that the lower bounds are likely to be closer to the actual values of $p(\Delta, D)$ and that good upper bounds likely to be difficult to establish". They asked as well the question: "Let D be fixed. Is it the case that for all sufficiently large Δ there are networks with maximum degree Δ , diameter at most D, and $p(\Delta, D)$ nodes which are all of the same type?" We improve the constructions of Hell and Seyffarth increasing in the case $\Delta \geq 5$ the lower bound:

Theorem 1.1. The maximum size of a planar graph G of diameter D=2d is at least

$$p(\Delta, 2d) = \left\lceil \frac{3\Delta}{2} \frac{(\Delta - 1)^d - 1}{\Delta - 2} \right\rceil + 1. \tag{1}$$

E-mail address: serge_a_tishchenko@yahoo.fr.

We show that this bound is exact for large Δ :

Theorem 1.2. The size of a planar graph G of diameter D=2d and maximum degree $\Delta \geq 6(12d+1)$ is at most

$$\left\lceil \frac{3\Delta}{2} \frac{(\Delta-1)^d - 1}{\Delta - 2} \right\rceil + 1.$$

The proof of Theorem 1.2 is based on a 5-separator construction in a plane graph. The existence of an N-separator in a plane graph with bounded number of vertices in each face was proved recently [5]. We use hereunder Theorem 1.1 of [5] in the case N = 5:

Theorem 1.3. Given a plane triangular graph G_T and spanning tree G_S in it. If

$$|V(G_T)| > 7$$
,

then, there exists 5-separator S_5 partitioning graph G_T into five parts A_i , $i=1,\ldots,5$ with borders b_i , $i=1,\ldots,5$ such that

$$V(A_i) \ge \frac{|V(G_T)| + 2}{9} - \frac{V(b_i)}{2}. (2)$$

2. Some preliminary results

We consider hereunder a plane graph G of maximum degree Δ , and diameter 2d.

Claim 2.1. The maximum number vertices at distance n from any given vertex $v_C \in V(G)$ is

$$|V_n| \le \deg(v_C)(\Delta - 1)^{n-1}. \tag{3}$$

Claim 2.2. Let R_n be a root tree of length n in G and v_R be its root vertex. Then

$$|R_n| \le 1 + \deg(v_R) \frac{(\Delta - 1)^n - 1}{\Delta - 2}. \tag{4}$$

Consider arbitrarily cycle C in G and its interior A_C . Let $V_n(A_C)$ be set of vertices of A_C at distance n from C. The following lemma holds.

Lemma 2.3. Given three distinct arcs C_i , i = 1, 2, 3 of cycle C, and set $V_{n3} \subset V_n(A_C)$ any vertex of which is connected by n-paths with each part C_i . Then,

$$|V_{n3}| \le 3(\Delta - 1)^{n-1} - 2. \tag{5}$$

Proof. The proof is direct. Consider arbitrarily vertex v_C and three non intersecting (but possibly having common parts) n-paths P_i , i=1,2,3 connecting it to three distinct arcs C_i , i=1,2,3. These paths partition the interior of cycle C into at least three separate faces F_i , i=1,2,3 (Fig. 1). Let $V_n(F_i) = V_n(A_C) \cap V(F_i)$. Consider arbitrarily face F_1 . Since it has no vertices incident to vertices of $V(C_1)$ each vertex of $V_n(F_1)$ is connected to arc C_1 by an n-path which crosses the border of F_1 at some vertex $v_P \in V(P_2 \cup P_3)$. Without loss of generality, let $v_P \in V(P_3)$. Obviously, the distance from such vertex to v_P is the same as from v_C to v_P , and at least one n-path connecting this vertex to C contains vertex v_P and all vertices of $V(P_3)$ which are closer to arc C_3 . Maximum number of different n-paths containing vertices of $V(P_3)$ at such conditions equals $(\Delta - 1)^{n-1} - 1$. Adding the same numbers from paths P_1 and P_2 together with vertex v_C gives (5) for the maximum possible number of vertices in set $|V_{n3}|$ coinciding with (5). \square

Download English Version:

https://daneshyari.com/en/article/4653853

Download Persian Version:

https://daneshyari.com/article/4653853

<u>Daneshyari.com</u>