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1. Introduction

Commonly used bases for the vector space A}, of homogeneous of degree r symmetric functions
in n variables X = (xq, ..., x,) are the monomial symmetric functions {m; (x) | A + r}, elementary
symmetric functions {e; (x) | A F r}, (complete) homogeneous symmetric functions {h; (x) | A - r},
power sum symmetric functions {p, (x) | A F r}, and Schur functions {s;(x) | A I r}. (See [12, Ch. 7]
for definitions.)

To each element g (X) of these bases, we will associate a term-normalized symmetric function G; (x)
and a mean &, (x) by

Go=—2% 600 =G (11)
g)t(l, ey 1)

Thus, for example E; (X) and ¢, (X) are associated with the elementary symmetric function ey (x). Note

that {G, (X) | A - r} forms a basis of A}, and that the functions {&, (x) | A - r}, while symmetric, are

not polynomials in X and therefore do not belong to the ring of symmetric functions A,. In the definition
of &, (x), we assume r > 0.
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The functions &; (x) are examples of symmetric means (see, e.g., [2, p. 62]). By definition, these are
symmetric functions in x1, . . ., x, satisfying

(1) min(a) < &(a) < max(a),

(2) a < b (componentwise) implies & (a) < & (b),
(3) limpo&(a+b) =6(@),

(4) &(ca) = c&(a),

foralla,b e RZ; and c € Rxo.

This paper will explore inequalities between symmetric means. For fixed n and two means §, &,
we will write §(x) < &(x) or &(x) — F(x) > 0if we have §(a) < &(a) foralla € RZ,. We define
the inequality F(X) < G(x) analogously. Note that if the degrees of F(x) and G(x) are equal, then we
have F(x) < G(x) if and only if §(X) < &(X).

The study of inequalities of symmetric means has a long history. (See, e.g., [2,5].) Perhaps the best
known such inequality is that of the arithmetic and geometric means,

€1(x) = €(x).

See [2] for many proofs of this result. Another example is Muirhead’s inequality [8]: if A and w are
partitions of r, then

M, (x) < M, (x) ifand only if u majorizes A; equivalently,
M, (x) < M, (x) ifand only if u majorizes A.

See Section 2 for a definition and further discussion of the majorization order (also known as
dominance order) on partitions. Muirhead's inequality will serve as a prototype for many of the results
in this paper.

Other classical inequalities are due to

(1) Maclaurin [6]: For 1 <i <j <n,
¢i(X) > ¢(x),

(2) Newton [9,p. 173]:For1 <k <n-—1,
Exk(X) > Egr1x-1(X);  equivalently,
Chk(X) = Eppqk—1(X),

(3) Schlémilch [11]: For 1 <i <}j,
Pi(x) < B;(x),

(4) Gantmacher [4, p.203]: Fork > 1,
Pkk(X) < Prey1k—1(X);  equivalently,
Py (X) < Per1r—1(X);  equivalently,
Bk (X) < Prt1,k-1(X),

(5) Popoviciu [10]: For1 <i <},
Hi(X) < 9H;(%),

(6) Schur [5, p. 164]: For k > 1,
Hyk(X) < Hpr10-1(%);  equivalently,
ik X) < Hieg1,k-1(X).

Note that term-normalized symmetric functions and means are defined only for a finite number

n of variables. Nevertheless, we may essentially eliminate dependence upon n from the inequalities
enumerated above by considering them to be inequalities in sequences of functions,

G= (G(X1)7 G(Xh x2)7 G(X], X2, Xg), .. ~)7
6 = (6()‘1)7 ®(X],X2), @(X],Xz, X3)a .. )
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