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a b s t r a c t

We prove that, for any positive integers k, n, and q, ifM is a simple
matroid that has neither a U2,q+2-minor nor an M(Kn)-minor and
M has sufficiently large rank, thenM has a cocircuit of size at most
r(M)/k.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Themain purpose of this paper is to give simpler proofs of two existing results in extremalmatroid
theory; we also prove the following new result:

Theorem 1.1. For any positive integers k, n, and q, there is a positive integer R1 such that, if M is a simple
matroid of rank at least R1 that has neither a U2,q+2-minor nor an M(Kn)-minor, then M has a cocircuit of
size at most r(M)/k.

This easily implies the main result of [2], as we show immediately below.

Corollary 1.2. For any positive integers n, k and q, there exists an integer R2 such that, if M is a simple
matroid of rank at least R2 that has neither a U2,q+2-minor nor an M(Kn)-minor, then M has a collection
of k disjoint cocircuits.

To prove Corollary 1.2 we use induction on k. The result is trivial for k = 1. For k ≥ 2, we define
R2(n, k, q) = max(2R2(n, k−1, q), R1(n, 2, q)). LetM be amatroid of rank at least R2(n, k, q) that has
neither a U2,q+2-minor nor anM(Kn)-minor. We may assume thatM is simple. Then, by Theorem 1.1,
M has a cocircuit Ck of size atmost r(M)/2. Thus r(M/Ck) ≥ r(M)/2 ≥ R2(n, k−1, q). So, by induction,
M/Ck has k − 1 disjoint cocircuits, say C1, . . . , Ck−1. Thus C1, . . . , Ck are disjoint cocircuits in M , as
required.

In [3], Corollary 1.2 was used to prove the following result.

Theorem 1.3. For any positive integers n and q, there exists an integer ρ such that, if M is a simplematroid
that has neither a U2,q+2-minor nor an M(Kn)-minor, then |E(M)| ≤ ρr(M).
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Note that neither U2,4 nor M(K5) is cographic. Applying Corollary 1.2 to the class of cographic
matroids gives the Erdős–Pósa theorem on edge-disjoint circuits in graphs; see [1]. Applying
Theorem 1.3 to the class of graphic matroids gives Mader’s theorem that, if G is a simple graph with
no Kn-minor, then |E(G)| ≤ ρn|V (G)|; see [5].

In this paper wewill use themethods of [3] to obtain a new proof of Theorem 1.3 that does not rely
on Corollary 1.2. We will then use Theorem 1.3 to prove Theorem 1.1 and, hence, also Corollary 1.2.
Proving the results in this order is significantly easier.We use several results from [3,2] butwe include
their proofs for the sake of completeness.

2. Preliminaries

For a more comprehensive introduction to extremal matroid theory, see the survey paper written
by Joseph Kung [4]. We follow the notation of Oxley [6]. A rank-1 flat is referred to as a point and a
rank-2 flat is referred to as a line. The number of points inM is denoted by ϵ(M). Kung [4] proved the
following theorem; we include the proof since it is so nice.

Theorem 2.1. For any integer q ≥ 2, if M is a matroid with no U2,q+2-minor, then ϵ(M) ≤
qr(M)

−1
q−1 .

Proof. Let e ∈ E(M). Inductively we may assume that ϵ(M/e) ≤
qr(M)−1

−1
q−1 . Since e is not in a (q + 2)-

point line, we have

ϵ(M) ≤ qϵ(M/e) + 1 = q

qr(M)−1

− 1
q − 1


+ 1 =

qr(M)
− 1

q − 1
,

as required. �

When q is a prime power, this bound is attained by projective geometries.
Let U(q) denote the set of all matroids with no U2,q+2-minor. Our proof of Theorem 1.3 requires

a bound on the number of hyperplanes in a rank-k matroid in U(q). Fortunately the quality of the
bound is not important; we use the following crude upper bound from [3], Proposition 2.3.

Lemma 2.2. Let k ≥ 1 and q ≥ 2 be integers and let M ∈ U(q) be a rank-k matroid. Then, M has at most
qk(k−1) hyperplanes.

Proof. Let n = ϵ(M); thus n ≤
qk−1
q−1 ≤ qk. Each hyperplane is spanned by k−1 points, so the number

of hyperplanes is at most
 n
k−1


≤ nk−1

≤ qk(k−1). �

The following result is from [2], Lemma 2.3.

Lemma 2.3. Let q ≥ 2 be an integer, let M ∈ U(q), and let C be a minimum-sized cocircuit of M. If C ′

is a cocircuit of M \ C, then |C ′
| ≥ |C |/q.

Proof. Set F = E(M) − (C ∪ C ′). Then F is a flat of M and M/F is a line with at most q + 1 points. So
there are at most q + 1 hyperplanes of M containing F , one of which is E(M) − C . Let the others be
H1,H2, . . . ,Hq′ . Then q′

≤ q and {H1 − F ,H2 − F , . . . ,Hq′ − F} is a partition of C . Since C is a cocircuit
of minimum size,

q′
|C | ≤

q′−
i=1

|E(M) − Hi|

=

q′−
i=1

(|C | + |C ′
| − |Hi − F |)

= q′
|C | + q′

|C ′
| − |C |.

Therefore |C ′
| ≥ |C |/q′

≥ |C |/q. �
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