European Journal of Combinatorics 32 (2011) 795-801

Contents lists available at ScienceDirect

European Journal
of Combinatorics

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

Small cocircuits in matroids

Jim Geelen

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada

ARTICLE INFO ABSTRACT

Article history: We prove that, for any positive integers k, n, and gq, if M is a simple

Available online 12 March 2011 matroid that has neither a U, 4,-minor nor an M(K,)-minor and
M has sufficiently large rank, then M has a cocircuit of size at most

This paper is dedicated in memory of Tom r(M)/k.

Brylawski. © 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The main purpose of this paper is to give simpler proofs of two existing results in extremal matroid
theory; we also prove the following new result:

Theorem 1.1. For any positive integers k, n, and q, there is a positive integer Ry such that, if M is a simple
matroid of rank at least R, that has neither a U q4»-minor nor an M (K,,)-minor, then M has a cocircuit of
size at most r (M) /k.

This easily implies the main result of [2], as we show immediately below.

Corollary 1.2. For any positive integers n, k and q, there exists an integer R, such that, if M is a simple
matroid of rank at least R, that has neither a U q4»-minor nor an M(K,)-minor, then M has a collection
of k disjoint cocircuits.

To prove Corollary 1.2 we use induction on k. The result is trivial for k = 1. For k > 2, we define
Ry(n, k, q) = max(2R,(n, k—1, q), Ri(n, 2, q)). Let M be a matroid of rank at least R, (n, k, q) that has
neither a U; 4,-minor nor an M (K;)-minor. We may assume that M is simple. Then, by Theorem 1.1,
M has a cocircuit Cy, of size at mostr (M) /2. Thusr (M /C) > r(M)/2 > Ry(n, k—1, q).So, by induction,
M /Ci has k — 1 disjoint cocircuits, say Cy, ..., Cy_1. Thus Cy, ..., C are disjoint cocircuits in M, as
required.

In [3], Corollary 1.2 was used to prove the following result.

Theorem 1.3. For any positive integers n and g, there exists an integer p such that, if M is a simple matroid
that has neither a Uy q4,-minor nor an M (K,)-minor, then |[E(M)| < pr(M).
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Note that neither U, 4 nor M(Ks) is cographic. Applying Corollary 1.2 to the class of cographic
matroids gives the Erdés-Pésa theorem on edge-disjoint circuits in graphs; see [1]. Applying
Theorem 1.3 to the class of graphic matroids gives Mader’s theorem that, if G is a simple graph with
no K,-minor, then |E(G)| < pn|V(G)|; see [5].

In this paper we will use the methods of [3] to obtain a new proof of Theorem 1.3 that does not rely
on Corollary 1.2. We will then use Theorem 1.3 to prove Theorem 1.1 and, hence, also Corollary 1.2.
Proving the results in this order is significantly easier. We use several results from [3,2] but we include
their proofs for the sake of completeness.

2. Preliminaries

For a more comprehensive introduction to extremal matroid theory, see the survey paper written
by Joseph Kung [4]. We follow the notation of Oxley [6]. A rank-1 flat is referred to as a point and a
rank-2 flat is referred to as a line. The number of points in M is denoted by € (M). Kung [4] proved the
following theorem; we include the proof since it is so nice.
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When q is a prime power, this bound is attained by projective geometries.

Let U(q) denote the set of all matroids with no U, 44,-minor. Our proof of Theorem 1.3 requires
a bound on the number of hyperplanes in a rank-k matroid in U(q). Fortunately the quality of the
bound is not important; we use the following crude upper bound from [3], Proposition 2.3.

Lemma 2.2. Let k > 1and q > 2 beintegers and let M € U(q) be a rank-k matroid. Then, M has at most
q** =D hyperplanes.
Proof. Letn = ¢(M); thusn < ‘f;i—*]] < g*. Each hyperplane is spanned by k — 1 points, so the number
of hyperplanes is at most (") < n*~' < ¢*¢=D. O

The following result is from [2], Lemma 2.3.
Lemma 2.3. Let q > 2 be an integer, let M € U(q), and let C be a minimum-sized cocircuit of M. If C’
is a cocircuit of M \ C, then |C'| > |C|/q.

Proof. Set F = E(M) — (C U C’). Then F is a flat of M and M /F is a line with at most g + 1 points. So
there are at most q + 1 hyperplanes of M containing F, one of which is E(M) — C. Let the others be
Hi,H,,...,Hy. Thenq < qand{H, —F,H, —F, ..., Hy —F}isapartition of C. Since C is a cocircuit
of minimum size,
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Therefore |C’| > |C|/q' > |C|/q. O
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