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a b s t r a c t

Henning and Yeo proved a lower bound for the minimum size of a
maximummatching in a connected k-regular graphwithn vertices;
it is sharp infinitely often. In an earlier paper, we characterized
when equality holds. In this paper, we prove a lower bound for
theminimum size of a maximummatching in an l-edge-connected
k-regular graphwithn vertices, for l ≥ 2 and k ≥ 4. Again it is sharp
for infinitely many n, and we characterize when equality holds in
the bound.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Petersen [10] proved that every cubic graph with no cut-edges has a perfect matching. It is natural
to askwhat happenswhen there are cut-edges. Thematching number of a graphG, writtenα′(G), is the
maximum size of a matching in G. Biedl et al. [2] determined the smallest matching number among
connected cubic graphs with n vertices. Henning and Yeo [6] extended this to connected k-regular
n-vertex graphs for appropriate n. In [9], we gave a short proof of their bound for odd k, characterized
the extremal graphs, and studied the relationship between the matching number and the number of
cut-edges.

Chartrand et al. [4] determined the minimum number of vertices in a k-regular (k − 2)-edge-
connected graph with no perfect matching. Niessen and Randerath [8] extended this to k-regular
l-edge-connected graphs. In another direction, Broere et al. [3] gave a formula for the minimum
size of a matching among k-regular (k − 2)-edge-connected graphs with a fixed number of vertices
(see also [7]). Our general lower bound for the minimum size of a matching in a k-regular l-edge-
connected graph with n vertices implies the results we have mentioned when the parameters are set
to appropriate values. Although this bound is sharp infinitely often when l > 1, for l = 1 the bound
in [6,9] is stronger. In Section 3, we characterize the graphs achieving equality in the bound for l > 1,
and in Section 4 we show that there are infinitely many of them.
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We note also that a forthcoming paper by Cioabă and O [5] explores the relationship among
matching, edge-connectivity, and eigenvalues.

2. The lower bound

We use the Berge–Tutte Formula for the matching number. The deficiency def(S) of a vertex set S
in G is defined by def(S) = o(G− S)−|S|, where o(H) is the number of odd components in a graph H .
Tutte [12] proved that a graphG has a 1-factor if and only if def(S) ≤ 0 for all S ∈ V (G). The equivalent
Berge–Tutte Formula (see [1]) states that α′(G) = minS⊆V (G)

1
2 (n − def(S)).

In our counting arguments based on the Berge–Tutte Formula, we consider edge cuts that separate
an odd number of vertices from the rest of the graph. Since the degree sum of any graph is even,
it follows that for such a cut in a k-regular graph, the size of the cut has the same parity as k. Thus
the bound when the edge-connectivity has opposite parity from the degree is the same as the bound
for the next larger value of edge-connectivity. That is, it suffices to study (2t + 1)-edge-connected
(2r + 1)-regular graphs and 2t-edge-connected 2r-regular graphs.

Since 2r2 + r = 2

r +

1
4

2
−

1
8 , the formula in Theorem 2.2 has a very similar flavor to that in

Theorem 2.1. In the special case t = r − 1, the formulas in Theorems 2.1 and 2.2 reduce to essentially
the formula in Broere et al. [3]. Also when n is even and less than 2(k⌈k/2⌉ + k − 1), those formulas
imply that a (k−2)-edge-connected k-regular graphwith n vertices has a perfectmatching; this is the
result of Chartrand et al. [4].More generally, for l-edge-connected graphs, the threshold on the number
of vertices for graphs without perfect matchings given in Niessen and Randerath [8] also follows.

Theorem 2.1. If G is a (2t+1)-edge-connected (2r +1)-regular graph with n vertices, where 0 ≤ t ≤ r,
then α′(G) ≥

n
2 −


r−t

2(r+1)2+t


n
2 .

Proof. Let S be a set with maximum deficiency. Thus, α′(G) =
1
2 (n − def(S)), where def(S) =

o(G − S) − |S|. Let ci count the odd components of G − S joined to S by exactly i edges; note that
ci is nonzero only when i is odd. Let c = c(2t+1) + · · · + c(2r−1), and let c ′

= o(G − S) − c. Each odd
component counted by c ′ is joined to S by at least 2r +1 edges. Note that for 2t +1 ≤ i ≤ 2r −1, each
odd component of G−S joined to S by exactly i edges has at least 2r+3 vertices. (At least q(2r+2−q)
edges join any set of q vertices to the rest ofG, and this lower bound is at least 2r+1when q ≤ 2r+1.)

Since the edges incident to S include the edges joining S to odd components of G − S, we have
(2r + 1)|S| ≥ (2r + 1)c ′

+ (2t + 1)c , and hence |S| ≥ c ′
+

 2t+1
2r+1


c ≥

 2t+1
2r+1


c. Therefore,

n ≥ |S| + c(2r + 3) ≥
 2t+1
2r+1 + 2r + 3


c , which yields c ≤


2r+1

4r2+8r+4+2t


n. We compute

def(S) = (c + c ′) − |S| ≤ c −
2t + 1
2r + 1

c =
2(r − t)
2r + 1

c

≤
2(r − t)
2r + 1


2r + 1

4r2 + 4r + 4 + 2t


n =

(r − t)n
2(r + 1)2 + t

. �

As noted earlier, the same bound holds for 2t-edge-connected (2r + 1)-regular graphs. Similarly,
the bound in the next theorem also holds for (2t − 1)-edge-connected 2r-regular graphs.

Theorem 2.2. If G is a 2t-edge-connected 2r-regular graph with n vertices, where 1 ≤ t ≤ r and r ≥ 2,
then α′(G) ≥

n
2 −


r−t

2r2+r+t


n
2 .

Proof. The proof is similar to that of Theorem 2.1. Defining S and ci as in that proof, here the
contributions are nonzero only when i is even and at least 2t . Also, for 2t ≤ i ≤ 2r − 2, the odd
components of G− S joined to S by i edges have at least 2r +1 vertices. The same steps as before then
lead to def(S) ≤

(r−t)n
2r2+r+t

. �
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