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1. Introduction

Tensegrity structures are pin-connected frameworks where some of the members are cables
or struts. Today, tensegrity structures interest researchers in the engineering, mathematical and
biological communities.

The elements of tensegrity structures, namely cables and struts, are characterized by their abilities
to sustain only one type of load, while being capable of deforming freely in the opposite direction.
Comparing against the regular pin-connected rod structures, the first property does not present much
disadvantage, as in most cases the structures are designed so that the allowed loads induce only
one type of force in each of the rods. On the other hand, the second property makes it possible to
alter the geometry of the structures and thus to achieve unique technological properties. Controlling
the geometry of the static structures gives rise to a variety of practical applications including
producing foldable and deployable structures [13], smart structures, structures adjustable to the
environmental conditions [11] and many others. Additional advantages of the tensegrity structures
include significant weight reduction while not affecting the static performance and simplification
of the construction process. Over the past decades, numerous studies of the advantages and the
properties were performed, some of which are as follows.
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In engineering, tensegrity structures provide efficient solutions for applications like those in
deployable structures [13,6], shape-controllable structures, smart sensors [12] and lightweight
structures.

The biological community employs tensegrity structures as models underlying the behavior of a
number of biological entities, such as the cytoskeleton [7]. Adopting such models enables biologists
to interpret some observed but previously unexplained natural phenomena.

The complexity of the behavior on one hand and the special properties on the other provide the
incentive for mathematical studies of tensegrity structures [2,3]. The main interest in this respect is
concentrated on the issues of checking rigidity [10,5] and structural analysis of these structures.

A key problem in the design of tensegrity structures is the determination of geometrical
configurations where a given structure becomes rigid. This problem, also referred to as the ‘form-
finding problem’ [ 14], does not possess a general analytical solution, except for some special, relatively
simple cases [4].

The present paper addresses a combinatorial approach for treating one-dimensional tensegrity
structures, i.e. structures where all members are parallel. The paper establishes a theorem for checking
the topological rigidity of these structures, i.e. deciding whether for a given graph there exists at least
one rigid geometrical embedding. If there does, a graph-theoretical algorithm is provided for finding
arigid embedding for the given frame topology. This can be regarded as an alternative solution for the
‘form-finding problem’, although, for now, it is limited to one-dimensional structures. Additionally,
an algorithm for checking the rigidity of a structure with a given geometry is shown to be equivalent
to checking whether the corresponding graph is strongly connected.

For any rigid graph there is no one-dimensional singular embedding configuration since for the
latter we need that the sum of the virtual work is equal to zero, i.e., the displacement/velocity of
a joint is perpendicular to the corresponding rod, a situation that cannot arise in one-dimensional
systems.

It is shown that the methodology can partly be considered as a special case of a more general
theorem based on matroid theory [10], which raises the possibility that in the future the method
could be expanded to multidimensional cases.

2. The condition for graph embeddability as a rigid one-dimensional framework

Let G = (V, E) be a finite graph with vertex set V and edge set E and let x denote a bipartition
E = Ec UEs. A function f : V(G) — R is called a one-dimensional embedding of G if x # y implies
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is called a motion with respect to the bipartition x or for short a y-motion of the embedded graph G.
Such a y-motion is trivial if there exists a constant ¢ € R such that g(x) = f(x) +c foreveryx € V(G).

In the terminology of the real one-dimensional tensegrity structures, the vertices of a graph
represent the junctions, while edges belonging to E- and Es correspond to cables/struts respectively.
The embedding function f (x) indicates the location coordinate of junction x, while the motion function
g(x) indicates the new location coordinate of junction x, after the tensegrity structure has been
deformed. The requirements of Eqs. (1) and (2) are interpreted as physical constraints for the distance
between end junctions of the cables and struts to become only smaller and only larger respectively,
while the relative location of the two junctions remains unaltered.

A one-dimensional embedding f is called a one-dimensional rigid embedding of G with respect to
this bipartition, or for short a one-dimensional rigid x-embedding, if every y -motion of it is trivial.

A circuit C of the graph G is a mixed circuit with respect to a bipartition y, or for short a y-mixed
circuit, if neither C N E¢ nor C N Es is empty.
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