

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

On lattices whose minimal vectors form a 6-design

Gabriele Nebe a. Boris Venkov b

ARTICLE INFO

Article history: Available online 23 August 2008

Dedicated to Eiichi Bannai on the occasion of his 60th birthday

ABSTRACT

Let L be a lattice of dimension $n \le 24$ such that the minimal vectors of L form a 6-design and generate L. Then L is similar to either the root lattice E_8 , the Barnes–Wall lattice BW_{16} , the Leech lattice Λ_{24} , or n=23. For n=23 we conjecture that the only possibilities for L are the shorter Leech lattice O_{23} or its even sublattice Λ_{23} .

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Spherical designs were introduced in 1977 by Delsarte, Goethals and Seidel [11] and soon afterwards studied by Eiichi Bannai in a series of papers ([3–5], to mention only a few of them). A spherical t-design is a finite subset X of the sphere such that every polynomial on \mathbb{R}^n of total degree at most t has the same average over X as over the entire sphere. The theory of lattices has been used quite successfully to classify good designs of minimal possible cardinality (see [6]). In this paper we use the theory of designs to construct good lattices.

Definition 1.1. A t-design-lattice is a lattice Λ in Euclidean space such that its minimal vectors

$$Min(\Lambda) := \{\lambda \in \Lambda \mid (\lambda, \lambda) = min(\Lambda)\}\$$

form a spherical t-design and generate the lattice Λ .

Clearly any t-design-lattice is also a t'-design-lattice for all $t' \le t$. Note that the 4-design-lattices are exactly the strongly perfect lattices defined in [14] that are generated by their minimal vectors. They are now classified up to dimension 12 (see [14,12,13]). From this classification we see:

Theorem 1.2. Let $t \ge 4$ be even and let Λ be a t-design-lattice of dimension $n \le 12$. Then one of the following holds:

^a Lehrstuhl D für Mathematik, RWTH Aachen, Templergraben 64, 52062 Aachen, Germany

^b St. Petersburg Branch of the Steklov Mathematical Institute, Fontanaka 27, 191011 St. Petersburg, Russia

E-mail addresses: nebe@math.rwth-aachen.de, gabriele.nebe@math.rwth-aachen.de (G. Nebe), bbvenkov@yahoo.com (B. Venkov).

- (a) n = 1 and Λ is similar to \mathbb{Z} . Here t is arbitrary since the 0-dimensional sphere S^0 consists only of the two minimal vectors $\{1, -1\}$ of \mathbb{Z} .
- (b) n = 2, Λ is similar to the hexagonal lattice A_2 , and t = 4.
- (c) n = 4, Λ is similar to the root lattice D_4 , and t = 4.
- (d) n = 6, Λ is similar to the root lattice E_6 or its dual lattice E_6^* , and t = 4.
- (e) n = 7, Λ is similar to the root lattice E_7 or its dual lattice E_7^* , and t = 4.
- (f) n = 8, Λ is similar to the root lattice E_8 , and $t \le 6$.
- (g) n = 10, Λ is similar to the lattice K'_{10} or its dual lattice $(K'_{10})^*$, and t = 4.
- (h) n = 12, Λ is similar to the Coxeter-Todd lattice K_{12} , and t = 4.

This paper classifies the 6-design-lattices of dimension 23 \neq $n \leq$ 24. We will show the following theorem.

Theorem 1.3. Let $t \ge 6$ be even and let Λ be a t-design-lattice of dimension $n \le 24$. Then one of the following holds:

- (a) n = 1 and Λ is similar to \mathbb{Z} .
- (b) n = 8, Λ is similar to the root lattice E_8 , and t = 6.
- (c) n = 16, Λ is similar to the Barnes-Wall lattice BW₁₆, and t = 6.
- (d) n=23 and t=6. In this dimension there are at least two 6-design-lattices, namely the shorter Leech lattice O_{23} and its even sublattice Λ_{23} .
- (e) n = 24, Λ is similar to the Leech lattice Λ_{24} , and $t \leq 10$.

In fact all layers of the lattices in Theorem 1.3 are spherical t-designs. This is trivial in case (a) and follows from [2, Corollary 3.1] for the remaining cases except for case (d). For case (d) note that the automorphism group of O_{23} and $O_$

We also remark that it is still unknown, whether there are t-design-lattices for $t \ge 12$. The only known 10-design-lattices are the known extremal even unimodular lattices of dimension a multiple of 24, namely the Leech lattice Λ_{24} and the three unimodular lattices P_{48p} , P_{48q} and P_{48n} of dimension 48 with minimum 6 (see [10]).

2. Some general remarks on antipodal t-designs

In the following we assume that $n \ge 2$ to avoid trivialities. Let $X \subset S^{n-1}$ be a finite subset of the (n-1)-dimensional unit-sphere such that $X \cap -X = \emptyset$. For any even number t = 2h, the condition that $X \cup -X$ be a spherical t-design is equivalent to the existence of some number c_t such that for all $\alpha \in \mathbb{R}^n$

$$(Dt)(\alpha): \sum_{x \in X} (x, \alpha)^t = c_t |X|(\alpha, \alpha)^h.$$

The constant c_t is then uniquely determined and easily calculated by applying t times the Laplace operator Δ with respect to α (see [14]) as

$$c_t = \prod_{i=1}^h \frac{2j-1}{n+2j-2}$$
 (where $t = 2h$).

Note that

$$\Delta(Dt)(\alpha) = (D(t-2))(\alpha).$$

If we apply these equalities to the minimal vectors $X \stackrel{.}{\cup} -X = \text{Min}(\Lambda)$ of a t-design-lattice Λ and some minimal vector $\alpha \in \text{Min}(\Lambda^*)$ of the dual lattice we get lower bounds on the Bergé-Martinet invariant

$$\gamma'(\Lambda)^2 := \gamma(\Lambda)\gamma(\Lambda^*) = \min(\Lambda)\min(\Lambda^*)$$

of a t-design-lattice as follows.

Download English Version:

https://daneshyari.com/en/article/4654460

Download Persian Version:

https://daneshyari.com/article/4654460

Daneshyari.com