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a b s t r a c t

We prove that, if a netlike partial cube G (see [N. Polat, Netlike
partial cubes I. General properties, Discrete Math. 307 (2007)
2704–2722]) contains no isometric rays, then there exists a convex
cycle or a finite hypercube which is fixed by every automorphism
ofG. Furthermorewe prove that every self-contraction (mapwhich
preserves or collapses the edges) ofG fixes a convex cycle or a finite
hypercube if and only ifG contains no isometric rays.We also study
the self-contractions of Gwhich fix no finite set of vertices.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The class of netlike partial cubes was introduced in Part I [16] of this series of papers as a class of
partial cubes containing median graphs, even cycles, benzenoid graphs and cellular bipartite graphs
as particular elements.
In this fourth paper we pursue the study of netlike partial cubes by focusing on fixed subgraph

properties, and chiefly by generalizing three results of Tardif [18] on median graphs. Fixed subgraph
theorems are far-reaching outgrowths of metric fixed point theory. They have been a flourishing topic
in the recent literature on metric graph theory. See in particular the study [4] by Brešar et al. of tree-
like partial cubes, another class of finite partial cubes that contains all finite median graphs.
For a netlike partial cube G, just as formedian graphs, the property that every self-contraction fixes

a finite regular netlike subgraph is directly linked to the absence of isometric rays in G. The proofs of
this result and of related ones, which form the best part of this paper, require the geodesic topology,
a topology which was introduced in [11] for the study of graphs containing no isometric rays, and
which turns out for netlike partial cubes to be the topology generated by the convex sets as a subbase.
In the last sectionwe use this topology to specify which ends of a netlike partial cube are directions

of translating self-contractions of this graph, namely self-contractions which fix no finite set of
vertices.
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2. Preliminaries

2.1. Graphs

The graphs we consider are undirected, without loops or multiple edges, and may be finite or
infinite. Let G be a graph. If x ∈ V (G), the set NG(x) := {y ∈ V (G) : xy ∈ E(G)} is the neighborhood of
x in G, NG[x] := {x} ∪ NG(x) is the closed neighborhood of x in G and δG(x) := |NG(x)| is the degree of x
in G. For a set X of vertices of G we put NG[X] :=

⋃
x∈X NG[x] and NG(X) := NG[X] − X , we denote by

G[X] the subgraph of G induced by X , and we set G− X := G[V (G)− X].
A path P = 〈x0, . . . , xn〉 is a graph with V (P) = {x0, . . . , xn}, xi 6= xj if i 6= j, and E(P) = {xixi+1 :

0 ≤ i < n}. A path P = 〈x0, . . . , xn〉 is called an (x0, xn)-path, x0 and xn are its endvertices, while the
other vertices are called its inner vertices, n = |E(P)| is the length of P .
A cycle C with V (C) = {x1, . . . , xn}, xi 6= xj if i 6= j, and E(C) = {xixi+1 : 1 ≤ i < n} ∪ {xnx1},

is denoted by 〈x1, . . . , xn, x1〉. The non-negative integer n = |E(C)| is the length of C , and a cycle of
length n is called an n-cycle and is often denoted by Cn.
Let G be a connected graph. The usual distance between two vertices x and y, that is, the length of

any (x, y)-geodesic (=shortest (x, y)-path) in G, is denoted by dG(x, y). A connected subgraph H of G is
isometric in G if dH(x, y) = dG(x, y) for all vertices x and y ofH . The (geodesic) interval IG(x, y) between
two vertices x and y of G is the set of vertices of all (x, y)-geodesics in G.

2.2. Convexities

A convexity on a set X is an algebraic closure system C on X . The elements of C are the convex sets
and the pair (X,C) is called a convex structure. See van de Vel [19] for a detailed study of abstract
convex structures. Several kinds of graph convexities, that is convexities on the vertex set of a graph
G, have already been investigated. We will principally work with the geodesic convexity, that is the
convexity on V (G) which is induced by the geodesic interval operator IG. In this convexity, a subset
C of V (G) is convex provided it contains the geodesic interval IG(x, y) for all x, y ∈ C . The convex
hull coG(A) of a subset A of V (G) is the smallest convex set which contains A. The convex hull of a
finite set is called a polytope. A subset H of V (G) is a half-space if H and V (G) − H are convex. We
denote by IG the pre-hull operator of the geodesic convex structure of G, i.e. the self-map ofP (V (G))
such that IG(A) :=

⋃
x,y∈A IG(x, y) for each A ⊆ V (G). The convex hull of a set A ⊆ V (G) is then

coG(A) =
⋃
n∈N InG(A). Furthermore we say that a subgraph of a graph G is convex if its vertex set is

convex, and by the convex hull coG(H) of a subgraph H of Gwemean the smallest convex subgraph of
G containing H as a subgraph, that is

coG(H) := G[coG(V (H))].

2.3. Netlike partial cubes

First we recall some properties of partial cubes, that is of isometric subgraphs of hypercubes. Partial
cubes are particular connected bipartite graphs.
For an edge ab of a graph G, let

WGab := {x ∈ V (G) : dG(a, x) < dG(b, x)},

UGab := NG(W
G
ba).

If no confusion is likely, we will simply denoteWGab and U
G
ab byWab and Uab, respectively. Note that

the setsWab andWba are disjoint and that V (G) = Wab ∪Wab if G is bipartite and connected.
Two edges xy and uv are in the Djoković–Winkler relationΘ if

dG(x, u)+ dG(y, v) 6= dG(x, v)+ dG(y, u).

If G is bipartite, the edges xy and uv are in relation Θ if and only if dG(x, u) = dG(y, v) and
dG(x, v) = dG(y, u). The relationΘ is clearly reflexive and symmetric.
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