

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

Hexavalent half-arc-transitive graphs of order 4p

Xiuyun Wang, Yan-Quan Feng

Department of Mathematics, Beijing Jiaotong University, Beijing 100044, PR China

ARTICLE INFO

Article history: Received 5 July 2008 Accepted 20 November 2008 Available online 13 January 2009

ABSTRACT

A graph is half-arc-transitive if its automorphism group acts transitively on its vertex set and edge set, but not arc set. It was shown by [Y.-Q. Feng, K.S. Wang, C.X. Zhou, Tetravalent half-transitive graphs of order 4p, European J. Combin. 28 (2007) 726–733] that all tetravalent half-arc-transitive graphs of order 4p for a prime p are non-Cayley and such graphs exist if and only if p-1 is divisible by 8. In this paper, it is proved that each hexavalent half-arc-transitive graph of order 4p is a Cayley graph and such a graph exists if and only if p-1 is divisible by 12, which is unique for a given order. This result contributes to the classification of half-arc-transitive graphs of order 4p of general valencies.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Throughout this paper graphs are assumed to be finite, simple and undirected, but with an implicit orientation of the edges when appropriate. For a graph X, let V(X), E(X), A(X) and Aut(X) be the vertex set, the edge set, the arc set and the automorphism group of X, respectively. Let D_{2n} be the dihedral group of order 2n, and \mathbb{Z}_n the cyclic group of order n as well as the ring of integers modulo n. Denote by \mathbb{Z}_n^* the multiplicative group of \mathbb{Z}_n consisting of numbers coprime to n, and for a prime p, denote by \mathbb{Z}_p^* the elementary abelian group $\mathbb{Z}_p \times \mathbb{Z}_p \times \cdots \times \mathbb{Z}_p$ (m times). For a finite group G and a subset G of G such that $1 \not\in S$ and $G = S^{-1}$, the Cayley graph G on G with respect to G is defined to have vertex set G and edge set $\{\{g, sg\} \mid g \in G, s \in S\}$. A graph G is isomorphic to a Cayley graph on G if and only if its automorphism group G and G is a subgroup isomorphic to G acting regularly on vertices (see [1, Lemma 16.3]).

A graph X is said to be *vertex-transitive*, *edge-transitive* or *arc-transitive* if Aut(X) acts transitively on V(X), E(X), or A(X), respectively. A graph is said to be *half-arc-transitive* provided that it is vertex-transitive and edge-transitive, but not arc-transitive. More generally, by a half-arc-transitive action of

E-mail address: yqfeng@bjtu.edu.cn (Y.-Q. Feng).

a subgroup G of Aut(X) on a graph X we shall mean a vertex-transitive and edge-transitive, but not arc-transitive action of G on X. In this case, we shall say that the graph X is G-half-arc-transitive.

The investigation of half-arc-transitive graphs was initiated by Tutte [2] and he proved that a vertex- and edge-transitive graph with odd valency must be arc-transitive. In 1970 Bouwer [3] constructed a 2k-valent half-arc-transitive graph for every k > 2 and later more such graphs were constructed (see [4-10]). Let p be a prime. It is well known that there are no half-arc-transitive graphs of order p or p^2 [11], and by Cheng and Oxley [12], there are no half-arc-transitive graphs of order 2p. Alspach and Xu [4] classified half-arc-transitive graphs of order 3p and Wang [10] classified halfarc-transitive graphs of order a product of two distinct primes. Despite all of these efforts, however, more classifications of half-arc-transitive graphs with general valencies seem to be very difficult. In fact, constructing and characterizing half-arc-transitive graphs with small valencies is currently an active topic in algebraic graph theory (see [13-23]). It was shown in [24] that there are no tetravalent half-arc-transitive Cayley graphs of order 4p, and a tetravalent half-arc-transitive non-Cayley graph of order 4p exists if and only if p-1 is divisible by 8, and then such a graph is unique for given order. Opposite to the tetravalent case, in this paper it is proved that each hexavalent half-arc-transitive graph of order 4p is a Cayley graph. Such a graph exists if and only if p-1 is divisible by 12, and again, such a graph is unique for given order. The result can be helpful to classify half-arc-transitive graphs of order 4p (for general valences), a problem that has been considered since 1994 by many authors.

2. Preliminary results

Let Cay(G, S) be a Cayley graph. Given $g \in G$, define the permutation R(g) on G by $x \mapsto xg$, $x \in G$. Then $R(G) = \{R(g) \mid g \in G\}$ is a permutation group isomorphic to G, called the *right regular representation* of G. The Cayley graph Cay(G, S) is vertex-transitive because it admits R(G) as a regular subgroup of the automorphism group Aut(Cay(G, S)). Furthermore, the group $Aut(G, S) = \{\alpha \in Aut(G) \mid S^{\alpha} = S\}$ is also a subgroup of Aut(Cay(G, S)). Actually, Aut(G, S) is a subgroup of $Aut(Cay(G, S))_1$, the stabilizer of the vertex 1 in Aut(Cay(G, S)). A Cayley graph Cay(G, S) is said to be *normal* if Aut(Cay(G, S)) contains R(G) as a normal subgroup. The following proposition is fundamental for normal Cayley graphs.

Proposition 2.1 ([22, Proposition 1.5]). Let X = Cay(G, S) be a Cayley graph on a finite group G with respect to S. Let A = Aut(X) and let A_1 be the stabilizer of 1 in A. Then X is normal if and only if $A_1 = \text{Aut}(G, S)$.

Now we state a simple observation about half-arc-transitive graphs (see [13]).

Proposition 2.2. There are no half-arc-transitive graphs with fewer than 27 vertices.

The following proposition is straightforward (see [24, Propositions 2.1 and 2.2]).

Proposition 2.3. Let X = Cay(G, S) be a half-arc-transitive graph. Then, there is no involution in S, and no $\alpha \in \text{Aut}(G, S)$ such that $s^{\alpha} = s^{-1}$ for some $s \in S$. In particular, there are no half-arc-transitive Cayley graphs on abelian groups.

Li et al. [7] considered primitive half-arc-transitive graphs.

Proposition 2.4 ([7, Theorem 1.4]). There are no vertex-primitive half-arc-transitive graphs of valency less than 10.

To state the classification of connected cubic and hexavalent symmetric graphs of order 2p, p a prime, due to Cheng and Oxley [12], we need to define the following graphs. Let V and V' be two disjoint copies of \mathbb{Z}_p , say $V=\{i\mid i\in\mathbb{Z}_p\}$ and $V'=\{i'\mid i\in\mathbb{Z}_p\}$. Let r be a positive integer dividing p-1 and H(p,r) the unique subgroup of \mathbb{Z}_p^* of order r. Define the graph G(2p,r) to have vertex set $V\cup V'$ and edge set $\{xy'\mid x,y\in\mathbb{Z}_p,y-x\in H(p,r)\}$. Note that $G(2p,p-1)\cong K_{p,p}$. Let τ and ρ be the maps defined as following: $i^\tau=i+1$ and $i'^\tau=i'+1$, and $i^\rho=(-i)'$ and $i'^\rho=-i$. Then, the graph G(2p,r) is a Cayley graph since $\langle \tau,\rho \rangle$ is regular on V(G(2p,r)).

Download English Version:

https://daneshyari.com/en/article/4654601

Download Persian Version:

https://daneshyari.com/article/4654601

Daneshyari.com