

European Journal of Combinatorics

European Journal of Combinatorics 28 (2007) 734-741

www.elsevier.com/locate/ejc

The homology of the cycle matroid of a coned graph Woong Kook

Department of Mathematics, University of Rhode Island, Kingston, RI 02881, United States

Received 16 March 2005; accepted 16 January 2006 Available online 9 March 2006

Abstract

The cone \hat{G} of a finite graph G is obtained by adding a new vertex p, called the cone point, and joining each vertex of G to p by a simple edge. We show that the rank of the reduced homology of the independent set complex of the cycle matroid of \hat{G} is the cardinality of the set of the edge-rooted forests in the base graph G. We also show that there is a basis for this homology group such that the action of the automorphism group $\operatorname{Aut}(G)$ on this homology is isomorphic (up to sign) to that on the set of the edge-rooted forests in G. © 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Let G be a finite graph and let I(G) denote the independent set complex of the cycle matroid of G: I(G) is a simplicial complex with the vertex set E(G), the set of edges of G, and $\sigma \subset E(G)$ is a face of I(G) if σ does not contain any cycle. An important property of I(G) is shellability, which implies that I(G) has the homotopy type of a wedge of (n-2)-dimensional spheres, where n is the order of G. Therefore, a topological invariant that one naturally associates with I(G) is the rank of the top reduced homology group $\tilde{H}_{n-2}(I(G))$. We will denote this invariant by $\alpha(G)$ throughout the paper.

It is well known that when G is connected, $\alpha(G)$ is the number of the spanning trees in G with internal activity zero (refer to [1, Theorem 7.8.1] for a matroid theoretic generalization of this result). This result is somewhat unnatural in that the internal activity of a spanning tree in G depends on the ordering of E(G), whereas $\alpha(G)$ is independent of such orderings. However, for the complete graph K_n , a new combinatorial interpretation for $\alpha(K_n)$ that is independent of any ordering of $E(K_n)$ was found in [3]: $\alpha(K_n)$ is the cardinality of the set of all edge-rooted forests in K_{n-1} (refer to Section 2 for the definition of the edge-rooted forests). Moreover, it

E-mail address: andrewk@math.uri.edu.

was shown that one can associate an edge-rooted forest in K_{n-1} with a fundamental cycle in $\tilde{H}_{n-2}(I(K_n))$, the collection of which then forms a basis for $\tilde{H}_{n-2}(I(K_n))$. It is also worth noting that a formula for $\alpha(K_n)$ is known in terms of the Hermite polynomial, a generating function for partial matchings (degree 1 subgraphs) in a graph (refer to [6]).

In this paper, we will generalize the results in [3] to the following class of graphs: define the *cone* \hat{G} of a finite graph G to be the graph obtained by adding a new vertex p, called the *cone point*, and joining each vertex of G to p by a simple edge. For example, the complete graph K_{n+1} is the cone of K_n and the wheel W_n is the cone of the circuit C_n . The first main result of this paper is that $\alpha(\hat{G})$ is again the cardinality of the set $\mathcal{F}_e(G)$ of all edge-rooted forests in G. We will show this by constructing a bijection between $\mathcal{F}_e(G)$ and the set of all spanning trees in \hat{G} with internal activity zero. Also we will create a set of fundamental cycles in $\tilde{H}_{n-1}(I(\hat{G}))$ that is naturally associated with $\mathcal{F}_e(G)$. By means of a partial ordering in $\mathcal{F}_e(G)$ which we will discuss in Section 2.2, we will see that this set forms a basis for $\tilde{H}_{n-1}(I(\hat{G}))$. Most importantly, we will also establish that, when G is simple, the action of the automorphism group $\operatorname{Aut}(G)$ on $\tilde{H}_{n-1}(I(\hat{G}))$ is isomorphic to the permutation action on $\mathcal{F}_e(G)$ tensored with the sign representation.

Throughout the paper, we will assume that G is a non-empty finite graph with the vertex set $[n] = \{1, \ldots, n\}$ when the order of G is n > 0. Multiple edges are allowed in G unless otherwise stated. An m-dimensional face $\sigma \in I(G)$ is identified with the spanning forest $F = F(\sigma)$ of G (hence V(F) = V(G)) whose edges are the m + 1 elements of σ . A face σ of I(G) and the corresponding spanning forest $F = F(\sigma)$ will both be denoted by F. When G is connected, a facet (a maximal simplex under inclusion) of I(G) is a spanning tree in G.

2. Edge-rooted forests

We refer the reader to [7] for matroids in general and the excellent article [1] for the definitions and results concerning independent set complexes of matroids that will be used throughout this paper.

2.1. A new combinatorial interpretation for $\alpha(\hat{G})$

First, we review internal activity. Let G be a finite graph equipped with a linear ordering ω of E(G) the set of its edges. Given a spanning tree T in G, deleting an edge e in T creates a forest with two components, say T_1 and T_2 . The *fundamental bond* of e with respect to T is the set $E_G(T_1, T_2)$ of all edges in G having one vertex in T_1 and the other in T_2 . In particular, e is always in its own fundamental bond. The edge $e \in T$ is said to be *internally active* if e is ω -smallest in its fundamental bond. Otherwise e is *internally passive*. The internal activity of T is the number of internally active edges in T.

Recall that the *cone* \hat{G} of a graph G is obtained by adding a cone point p to G, and joining each vertex of G to p by a simple edge. For the coned graph \hat{G} , we will use the following ordering of $E(\hat{G})$ to determine the spanning trees in \hat{G} with internal activity zero. Let V(G) = [n], and let the vertices of \hat{G} be linearly ordered by $p < 1 < 2 < \cdots < n$. Let ω be the resulting lexicographic ordering of $E(\hat{G})$: $\{p, 1\} <_{\omega} \{p, 2\} <_{\omega} \cdots <_{\omega} \{p, n\} <_{\omega} \cdots <_{\omega} \{n - 1, n\}$. Hence every edge in the base G is larger than the edges in the star of p in this ordering.

Now given any spanning tree T in \hat{G} , define the *support* of T to be $T \cap G$. Note that $T \cap G$ is a spanning forest in G, and there is exactly one vertex in each component of $T \cap G$ that is adjacent to p in T. This vertex will be called a *connecting root*. The following lemma is a key result of this section, whose proof is immediate and will be omitted.

Download English Version:

https://daneshyari.com/en/article/4654703

Download Persian Version:

https://daneshyari.com/article/4654703

Daneshyari.com