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Abstract

A 3-connected matroid M is sequential or has path width 3 if its ground set E(M) has a sequential
ordering, that is, an ordering (e1, e2, . . . , en) such that ({e1, e2, . . . , ek}, {ek+1, ek+2, . . . , en}) is a 3-
separation for all k in {3, 4, . . . , n − 3}. In this paper, we consider the possible sequential orderings that
such a matroid can have. In particular, we prove that M essentially has two fixed ends, each of which is
a maximal segment, a maximal cosegment, or a maximal fan. We also identify the possible structures in
M that account for different sequential orderings of E(M). These results rely on an earlier paper of the
authors that describes the structure of equivalent non-sequential 3-separations in a 3-connected matroid.
Those results are extended here to describe the structure of equivalent sequential 3-separations.
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1. Introduction

The matroid terminology used here will follow Oxley [3]. Let M be a matroid. When M is
2-connected, Cunningham and Edmonds [1] gave a tree decomposition of M that displays all
of its 2-separations. Now suppose that M is 3-connected. Oxley et al. [5] showed that there is a
corresponding tree decomposition of M that displays all non-sequential 3-separations of M up
to a certain natural equivalence. Both this equivalence and the definition of a non-sequential 3-
separation are based on the notion of full closure in M . For a set Y , if Y equals its closure in both
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M and M∗, we say that Y is fully closed in M . The full closure, fcl(Y ), of Y is the intersection of
all fully closed sets containing Y . It is obtained by beginning with Y and alternately applying the
closure operators of M and M∗ until no new elements can be added. If (X, Y ) is a 3-separation
of M , then (X, Y ) is sequential if fcl(X) or fcl(Y ) is E(M). Two 3-separations (Y1, Y2) and
(Z1, Z2) of M are equivalent if {fcl(Y1), fcl(Y2)} = {fcl(Z1), fcl(Z2)}.

While the introduction of this notion of equivalence is an essential tool in proving the main
result of [5], this equivalence ignores some of the finer structure of the matroid. Hall et al. [2]
made a detailed examination of this equivalence and described precisely what substructures in
the matroid result in two non-sequential 3-separations being equivalent. The assumption that the
3-separations are non-sequential is helpful in that it gives two fixed ends for the 3-separations
in an equivalence class K. More precisely, if (A1, B1) is in K, then (A1 − fcl(B1), fcl(B1)) and
(fcl(A1), B1 − fcl(A1)) are also in K. Letting A = A1 − fcl(B1) and B = B1 − fcl(A1), we
have, for every 3-separation (A2, B2) in K, that {A2 − fcl(B2), B2 − fcl(A2)} = {A, B}. Thus
we can view A and B as the fixed ends of the members of the equivalence class K. Moreover, we
can associate withK a sequence (A, x1, x2, . . . , xn, B) where E(M) = A∪{x1, x2, . . . , xn}∪ B
and, for all i in {0, 1, . . . , n}, the partition (A ∪ {x1, x2, . . . , xi }, {xi+1, xi+2, . . . , xn} ∪ B) is
a 3-separation. In [2], we described what reorderings of (x1, x2, . . . , xn) produce another such
sequence and specified what kinds of substructures of M result in these reorderings.

In this paper, we consider the behaviour of sequential 3-separations in M . In particular,
our aim is to associate fixed ends with such a 3-separation so that we can use the results of
[2]. Since we want this paper to include a description of sequential matroids that is as self-
contained as possible, we shall state here a number of results from [2]. Let (A1, B1) be a
sequential 3-separation. We call (A1, B1) bisequential if both fcl(A1) and fcl(B1) equal E(M),
and unisequential otherwise. In the latter case, suppose that fcl(A1) = E(M). Then (A1, B1) is
equivalent to (A1− fcl(B1), fcl(B1)) and, if A = A1− fcl(B1), then, for every member (A2, B2)

of the equivalence class K containing (A1, B1), we have {A2− fcl(B2), B2− fcl(A2)} = {A,∅}.
This gives us A as one fixed end for every member ofK. Our first task in treating the members of
such an equivalence classK is to show that we can associate a second fixed end with the members
of K. Let S be a subset of E(M) with |S| ≥ 3. Then S is a segment if every 3-element subset of
S is a triangle, and S is a cosegment if every 3-element subset of S is a triad. We call S a fan if
there is an ordering (s1, s2, . . . , sn) of the elements of S such that, for all i ∈ {1, 2, . . . , n − 2},

(i) {si , si+1, si+2} is either a triangle or a triad, and
(ii) when {si , si+1, si+2} is a triangle, {si+1, si+2, si+3} is a triad, and when {si , si+1, si+2} is a

triad, {si+1, si+2, si+3} is a triangle.

This ordering (s1, s2, . . . , sn) is called a fan ordering of S. When n ≥ 4, the elements s1 and
sn are the only elements of the fan that are not in both a triangle and a triad contained in S. We
call these elements the ends of the fan S. The remaining elements of S are the internal elements
of the fan. We denote the set of such elements by I (S).

The second fixed end that one can associate with an equivalence class of unisequential 3-
separations is obtained using the following result.

Theorem 1.1. Let M be a 3-connected matroid with a 3-sequence (X, x1, x2, . . . , xn) where |X |
and n − 1 are both at least two and E(M)− X is fully closed. Then E(M)− X contains either

(i) a subset W such that, for every 3-sequence (X, y1, y2, . . . , yn), the set W is the unique
maximal subset of E(M)− X that contains {yn−2, yn−1, yn} and is a segment, a cosegment,
or a fan; or
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