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In 1968 and 1969, Andrews proved two partition theorems 
of the Rogers–Ramanujan type which generalise Schur’s cele-
brated partition identity (1926). Andrews’ two generalisations 
of Schur’s theorem went on to become two of the most influen-
tial results in the theory of partitions, finding applications in 
combinatorics, representation theory and quantum algebra. 
In a recent paper, the author generalised the first of these 
theorems to overpartitions, using a new technique which con-
sists in going back and forth between q-difference equations on 
generating functions and recurrence equations on their coeffi-
cients. Here, using a similar method, we generalise the second 
theorem of Andrews to overpartitions.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

A partition of n is a non-increasing sequence of natural numbers whose sum is n. An 
overpartition of n is a partition of n in which the first occurrence of a number may be 
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overlined. For example, there are 14 overpartitions of 4: 4, 4, 3 + 1, 3 + 1, 3 + 1, 3 + 1, 
2 + 2, 2 + 2, 2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1 and 1 + 1 + 1 + 1.

In 1926, Schur [19] proved the following partition identity.

Theorem 1.1 (Schur). Let n be a positive integer. Let D1(n) denote the number of parti-
tions of n into distinct parts congruent to 1 or 2 modulo 3. Let E1(n) denote the number 
of partitions of n of the form n = λ1 + · · ·+λs where λi−λi+1 ≥ 3 with strict inequality 
if λi+1 ≡ 0 mod 3. Then D1(n) = E1(n).

For example, for n = 9, the partitions counted by D1(9) are 8 + 1, 7 + 2 and 5 + 4
and the partitions counted by E1(9) are 9, 8 + 1 and 7 + 2. Thus D1(9) = E1(9) = 3.

Several proofs of Schur’s theorem have been given using a variety of different tech-
niques such as bijective mappings [9,10], the method of weighted words [2], and recur-
rences [3,5,7].

Schur’s theorem was subsequently generalised to overpartitions by Lovejoy [16] using 
the method of weighted words. The case k = 0 corresponds to Schur’s theorem.

Theorem 1.2 (Lovejoy). Let D1(k, n) denote the number of overpartitions of n into parts 
congruent to 1 or 2 modulo 3 with k non-overlined parts. Let E1(k, n) denote the number 
of overpartitions of n with k non-overlined parts, where parts differ by at least 3 if the 
smaller is overlined or both parts are divisible by 3, and parts differ by at least 6 if the 
smaller is overlined and both parts are divisible by 3. Then D1(k, n) = E1(k, n).

Theorem 1.2 was then proved bijectively by Raghavendra and Padmavathamma [18], 
and using q-difference equations and recurrences by the author [14].

Andrews extended the ideas of his proofs of Schur’s theorem to prove two much more 
general theorems on partitions with difference conditions [4,6]. But before stating these 
results in their full generality we need to introduce some notation. Let A = {a(1), ..., a(r)}
be a set of r distinct positive integers such that 

∑k−1
i=1 a(i) < a(k) for all 1 ≤ k ≤ r and 

the 2r − 1 possible sums of distinct elements of A are all distinct. We denote this set of 
sums by A′ = {α(1), ..., α(2r − 1)}, where α(1) < · · · < α(2r − 1). Let us notice that 
α(2k) = a(k+1) for all 0 ≤ k ≤ r−1 and that any α between a(k) and a(k+1) has largest 
summand a(k). Let N be a positive integer with N ≥ α(2r − 1) = a(1) + · · ·+ a(r). We 
further define α(2r) = a(r + 1) = N + a(1). Let AN denote the set of positive integers 
congruent to some a(i) mod N , −AN the set of positive integers congruent to some 
−a(i) mod N , A′

N the set of positive integers congruent to some α(i) mod N and −A′
N

the set of positive integers congruent to some −α(i) mod N . Let βN (m) be the least 
positive residue of m mod N . If α ∈ A′, let w(α) be the number of terms appearing in 
the defining sum of α and v(α) the smallest a(i) appearing in this sum.

To illustrate these notations in the remainder of this paper, it might be useful to 
consider the example where a(k) = 2k−1 for 1 ≤ k ≤ r and α(k) = k for 1 ≤ k ≤ 2r − 1.

We are now able to state Andrews’ generalisations of Schur’s theorem.
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