Sign variation, the Grassmannian, and total positivity

Steven N. Karp ${ }^{1}$
Department of Mathematics, University of California, Berkeley, United States

A R T I C L E I N F O

Article history:

Received 1 April 2015
Available online 31 August 2016

Keywords:

Sign variation
Total positivity
Totally nonnegative Grassmannian
Amplituhedron
Grassmann polytope
Positroid
Oriented matroid

Abstract

The totally nonnegative Grassmannian is the set of k-dimensional subspaces V of \mathbb{R}^{n} whose nonzero Plücker coordinates all have the same sign. Gantmakher and Krein (1950) and Schoenberg and Whitney (1951) independently showed that V is totally nonnegative iff every vector in V, when viewed as a sequence of n numbers and ignoring any zeros, changes sign at most $k-1$ times. We generalize this result from the totally nonnegative Grassmannian to the entire Grassmannian, showing that if V is generic (i.e. has no zero Plücker coordinates), then the vectors in V change sign at most m times iff certain sequences of Plücker coordinates of V change sign at most $m-k+1$ times. We also give an algorithm which, given a non-generic V whose vectors change sign at most m times, perturbs V into a generic subspace whose vectors also change sign at most m times. We deduce that among all V whose vectors change sign at most m times, the generic subspaces are dense. These results generalize to oriented matroids. As an application of our results, we characterize when a generalized amplituhedron construction, in the sense of Arkani-Hamed and Trnka (2013), is well defined. We also give two ways of obtaining the positroid

[^0]cell of each V in the totally nonnegative Grassmannian from the sign patterns of vectors in V.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction and main results

The (real) Grassmannian $\mathrm{Gr}_{k, n}$ is the set of k-dimensional subspaces of \mathbb{R}^{n}. Given $V \in \mathrm{Gr}_{k, n}$, take a $k \times n$ matrix X whose rows span V; then for k-subsets $I \subseteq\{1, \cdots, n\}$, we let $\Delta_{I}(V)$ be the $k \times k$ minor of X restricted to the columns in I, called a Plücker coordinate. (The $\Delta_{I}(V)$ depend on our choice of X only up to a global constant.) If all nonzero $\Delta_{I}(V)$ have the same sign, then V is called totally nonnegative, and if in addition no $\Delta_{I}(V)$ equals zero, then V is called totally positive. For example, the span V of $(1,0,0,-1)$ and $(-1,2,1,3)$ is a totally nonnegative element of $\mathrm{Gr}_{2,4}$, but V is not totally positive since $\Delta_{\{2,3\}}(V)=0$.

The set $\mathrm{Gr}_{k, n}^{\geq 0}$ of totally nonnegative $V \in \mathrm{Gr}_{k, n}$, called the totally nonnegative Grassmannian, has become a hot topic in algebraic combinatorics in the past two decades. The general algebraic study of total positivity for split reductive connected algebraic groups G over \mathbb{R}, and partial flag varieties G / P, was initiated by Lusztig [14], of which $\mathrm{Gr}_{k, n}^{\geq 0}$ corresponds to the special case $G / P=\operatorname{Gr}_{k, n}$. Of particular interest is the stratification of $\operatorname{Gr}_{k, n}^{\geq 0}$ according to whether each Δ_{I} is zero or nonzero. This stratification is a cell decomposition, which was conjectured by Lusztig [14] and proved by Rietsch [19] (for the general case G / P), and later understood combinatorially by Postnikov [18].

This general theory traces its origin to the study of totally positive matrices in the 1930s, in the context of oscillation theory in analysis. Here positivity conditions on matrices can imply special oscillation and spectral properties. A well-known result of this kind is due to Gantmakher and Krein [9], which states that if an $n \times n$ matrix X is totally positive (i.e. all $\binom{2 n}{n}$ minors of X are positive), then the n eigenvalues of X are distinct positive reals. Gantmakher and Krein [8] also gave a characterization of (what would later be called) the totally nonnegative and totally positive Grassmannians in terms of sign variation. To state their result, we introduce some notation. For $v \in \mathbb{R}^{n}$, let $\operatorname{var}(v)$ be the number of times v (viewed as a sequence of n numbers, ignoring any zeros) changes sign, and let

$$
\overline{\operatorname{var}}(v):=\max \left\{\operatorname{var}(w): w \in \mathbb{R}^{n} \text { such that } w_{i}=v_{i} \text { for all } 1 \leq i \leq n \text { with } v_{i} \neq 0\right\} .
$$

(We use the convention $\operatorname{var}(0):=-1$.) For example, if $v:=(1,-1,0,-2) \in \mathbb{R}^{4}$, then $\operatorname{var}(v)=1$ and $\overline{\operatorname{var}}(v)=3$.

Theorem 1.1 (Chapter V, Theorems 3 and 1 of [8]).
(i) $V \in \mathrm{Gr}_{k, n}$ is totally nonnegative iff $\operatorname{var}(v) \leq k-1$ for all $v \in V$.
(ii) $V \in \operatorname{Gr}_{k, n}$ is totally positive iff $\overline{\operatorname{var}}(v) \leq k-1$ for all $v \in V \backslash\{0\}$.

https://daneshyari.com/en/article/4655034

Download Persian Version:
https://daneshyari.com/article/4655034

Daneshyari.com

[^0]: E-mail address: skarp@berkeley.edu.
 URL: http://math.berkeley.edu/~skarp/.
 ${ }^{1}$ This work was supported by a Chateaubriand fellowship, an NSERC postgraduate scholarship, and NSF grant DMS-1049513.

