

Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series A

www.elsevier.com/locate/jcta

Sign variation, the Grassmannian, and total positivity

Steven N. Karp¹

Department of Mathematics, University of California, Berkeley, United States

A R T I C L E I N F O

Article history: Received 1 April 2015 Available online 31 August 2016

Keywords: Sign variation Total positivity Totally nonnegative Grassmannian Amplituhedron Grassmann polytope Positroid Oriented matroid

ABSTRACT

The totally nonnegative Grassmannian is the set of k-dimensional subspaces V of \mathbb{R}^n whose nonzero Plücker coordinates all have the same sign. Gantmakher and Krein (1950) and Schoenberg and Whitney (1951) independently showed that V is totally nonnegative iff every vector in V, when viewed as a sequence of n numbers and ignoring any zeros, changes sign at most k-1 times. We generalize this result from the totally nonnegative Grassmannian to the entire Grassmannian, showing that if V is *generic* (i.e. has no zero Plücker coordinates), then the vectors in V change sign at most m times iff certain sequences of Plücker coordinates of V change sign at most m - k + 1 times. We also give an algorithm which, given a non-generic V whose vectors change sign at most m times, perturbs V into a generic subspace whose vectors also change sign at most m times. We deduce that among all V whose vectors change sign at most m times, the generic subspaces are dense. These results generalize to oriented matroids. As an application of our results, we characterize when a generalized amplituhedron construction, in the sense of Arkani-Hamed and Trnka (2013), is well defined. We also give two ways of obtaining the positroid

E-mail address: skarp@berkeley.edu.

URL: http://math.berkeley.edu/~skarp/.

 $^{^{1}\,}$ This work was supported by a Chateau briand fellowship, an NSERC postgraduate scholarship, and NSF grant DMS-1049513.

cell of each V in the totally nonnegative Grassmannian from the sign patterns of vectors in V.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction and main results

The *(real) Grassmannian* $\operatorname{Gr}_{k,n}$ is the set of k-dimensional subspaces of \mathbb{R}^n . Given $V \in \operatorname{Gr}_{k,n}$, take a $k \times n$ matrix X whose rows span V; then for k-subsets $I \subseteq \{1, \dots, n\}$, we let $\Delta_I(V)$ be the $k \times k$ minor of X restricted to the columns in I, called a *Plücker* coordinate. (The $\Delta_I(V)$ depend on our choice of X only up to a global constant.) If all nonzero $\Delta_I(V)$ have the same sign, then V is called *totally nonnegative*, and if in addition no $\Delta_I(V)$ equals zero, then V is called *totally positive*. For example, the span V of (1, 0, 0, -1) and (-1, 2, 1, 3) is a totally nonnegative element of $\operatorname{Gr}_{2,4}$, but V is not totally positive since $\Delta_{\{2,3\}}(V) = 0$.

The set $\operatorname{Gr}_{k,n}^{\geq 0}$ of totally nonnegative $V \in \operatorname{Gr}_{k,n}$, called the *totally nonnegative Grass*mannian, has become a hot topic in algebraic combinatorics in the past two decades. The general algebraic study of total positivity for split reductive connected algebraic groups G over \mathbb{R} , and partial flag varieties G/P, was initiated by Lusztig [14], of which $\operatorname{Gr}_{k,n}^{\geq 0}$ corresponds to the special case $G/P = \operatorname{Gr}_{k,n}$. Of particular interest is the stratification of $\operatorname{Gr}_{k,n}^{\geq 0}$ according to whether each Δ_I is zero or nonzero. This stratification is a cell decomposition, which was conjectured by Lusztig [14] and proved by Rietsch [19] (for the general case G/P), and later understood combinatorially by Postnikov [18].

This general theory traces its origin to the study of *totally positive matrices* in the 1930s, in the context of oscillation theory in analysis. Here positivity conditions on matrices can imply special oscillation and spectral properties. A well-known result of this kind is due to Gantmakher and Krein [9], which states that if an $n \times n$ matrix X is *totally positive* (i.e. all $\binom{2n}{n}$ minors of X are positive), then the *n* eigenvalues of X are distinct positive reals. Gantmakher and Krein [8] also gave a characterization of (what would later be called) the totally nonnegative and totally positive Grassmannians in terms of sign variation. To state their result, we introduce some notation. For $v \in \mathbb{R}^n$, let var(v) be the number of times v (viewed as a sequence of n numbers, ignoring any zeros) changes sign, and let

$$\overline{\operatorname{var}}(v) := \max\{\operatorname{var}(w) : w \in \mathbb{R}^n \text{ such that } w_i = v_i \text{ for all } 1 \le i \le n \text{ with } v_i \ne 0\}.$$

(We use the convention $\operatorname{var}(0) := -1$.) For example, if $v := (1, -1, 0, -2) \in \mathbb{R}^4$, then $\operatorname{var}(v) = 1$ and $\overline{\operatorname{var}}(v) = 3$.

Theorem 1.1 (Chapter V, Theorems 3 and 1 of [8]). (i) $V \in \operatorname{Gr}_{k,n}$ is totally nonnegative iff $\operatorname{var}(v) \leq k - 1$ for all $v \in V$. (ii) $V \in \operatorname{Gr}_{k,n}$ is totally positive iff $\overline{\operatorname{var}}(v) \leq k - 1$ for all $v \in V \setminus \{0\}$. Download English Version:

https://daneshyari.com/en/article/4655034

Download Persian Version:

https://daneshyari.com/article/4655034

Daneshyari.com