Square lattice walks avoiding a quadrant

Mireille Bousquet-Mélou
CNRS, LaBRI, Université de Bordeaux, 351 cours de la Libération, F-33405
Talence Cedex, France

A R T I C L E I N F O

Article history:

Available online 15 July 2016

Keywords:

Lattice walks
Exact enumeration
Algebraic series

Abstract

In the past decade, a lot of attention has been devoted to the enumeration of walks with prescribed steps confined to a convex cone. In two dimensions, this means counting walks in the first quadrant of the plane (possibly after a linear transformation). But what about walks in non-convex cones? We investigate the two most natural cases: first, square lattice walks avoiding the negative quadrant $\mathcal{Q}_{1}=\{(i, j): i<0$ and $j<0\}$, and then, square lattice walks avoiding the West quadrant $\mathcal{Q}_{2}=$ $\{(i, j): i<j$ and $i<-j\}$. In both cases, the generating function that counts walks starting from the origin is found to differ from a simple D-finite series by an algebraic one. We also obtain closed form expressions for the number of n-step walks ending at certain prescribed endpoints, as a sum of three hypergeometric terms. One of these terms already appears in the enumeration of square lattice walks confined to the cone $\{(i, j): i+j \geq 0$ and $j \geq 0\}$, known as Gessel's walks. In fact, the enumeration of Gessel's walks follows, by the reflection principle, from the enumeration of walks starting from $(-1,0)$ and avoiding \mathcal{Q}_{1}. Their generating function turns out to be purely algebraic (as the generating function of Gessel's walks). Another approach to Gessel's walks consists in counting walks that start from $(-1,1)$ and avoid the West quadrant \mathcal{Q}_{2}. The associated generating function is D-finite but transcendental. © 2016 Elsevier Inc. All rights reserved.

[^0]

Fig. 1. Square lattice walks staying in a 135° wedge are equivalent to quadrant walks with steps $\rightarrow, \nearrow, \leftarrow, \swarrow$.

1. Introduction

In recent years, the enumeration of lattice walks confined to convex cones has attracted a lot of attention. In two dimensions, this means counting walks in the intersection of two half-spaces, which we can always assume (Fig. 1) to form the first quadrant $\mathcal{Q}=\{(i, j): i \geq 0$ and $j \geq 0\}$. The problem is then completely specified by prescribing a starting point and a set of allowed steps. The two most natural examples are walks on the square lattice (with steps $\rightarrow, \uparrow, \leftarrow, \downarrow$), and walks on the diagonal square lattice (with steps $\nearrow, \nwarrow, \swarrow, \searrow)$. Both cases can be solved via the classical reflection principle [15,16]. The enumeration usually records the length n of the walk (with a variable t), and the coordinates (i, j) of its endpoint (with variables x and y). For instance, the generating function of square lattice walks starting from $(0,0)$ and confined to \mathcal{Q} is $[16,10]$:

$$
\begin{equation*}
Q(x, y)=\sum_{i, j, n \geq 0} \frac{(i+1)(j+1)}{(n+1)(n+2)}\binom{n+2}{\frac{n-i-j}{2}}\binom{n+2}{\frac{n+i-j+2}{2}} x^{i} y^{j} t^{n} \tag{1}
\end{equation*}
$$

where the sum is restricted to integers i, j, n such that n and $i+j$ have the same parity. (To lighten notation, we ignore the dependence in t of this series.) This series is D-finite [21]: this means that it satisfies a linear differential equation in each of its variables t, x and y, with coefficients in the field $\mathbb{Q}(t, x, y)$ of rational functions in t, x and y.

In the past decade, a systematic study of quadrant walks with small steps (that is, steps in $\{-1,0,1\}^{2}$) has been carried out, and a complete classification is now available. For walks starting at $(0,0)$, the generating function is D-finite if and only if a certain group of birational transformations is finite. The proof combines an attractive combination of approaches: algebraic [7,10,14,15,23,26], computer-algebraic [3,18,19], analytic [4, 20,28], asymptotic [5,11,22,24].

The most intriguing D-finite case is probably Gessel's model, illustrated in Fig. 1. Around 2000, Ira Gessel conjectured that the number of $2 n$-step walks of this type starting and ending at $(0,0)$ was

$$
\begin{equation*}
g_{0,0}(2 n)=16^{n} \frac{(1 / 2)_{n}(5 / 6)_{n}}{(2)_{n}(5 / 3)_{n}} \tag{2}
\end{equation*}
$$

where $(a)_{n}=a(a+1) \cdots(a+n-1)$ is the ascending factorial. A computer-aided proof of this conjecture was finally found in 2009 by Kauers, Koutschan and Zeilberger [18]. A year

https://daneshyari.com/en/article/4655044

Download Persian Version:

https://daneshyari.com/article/4655044

Daneshyari.com

[^0]: E-mail address: bousquet@labri.fr.

