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We give a survey of the Lagrange inversion formula, including 
different versions and proofs, with applications to combinato-
rial and formal power series identities.
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1. Introduction

The Lagrange inversion formula is one of the fundamental formulas of combinatorics. 
In its simplest form it gives a formula for the power series coefficients of the solution 
f(x) of the function equation f(x) = xG(f(x)) in terms of coefficients of powers of G. 
Functional equations of this form often arise in combinatorics, and our interest is in these 
applications rather than in other areas of mathematics.

There are many generalizations of Lagrange inversion: multivariable forms [25], 
q-analogues [22,23,28,71], noncommutative versions [6,7,23,56] and others [26,43,45]. In 
this paper we discuss only ordinary one-variable Lagrange inversion, but in greater detail 
than elsewhere in the literature.
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In section 2 we give a thorough discussion of some of the many different forms of 
Lagrange inversion, prove that they are equivalent to each other, and work through 
some simple examples involving Catalan and ballot numbers. We address a number of 
subtle issues that are overlooked in most accounts of Lagrange inversion (and which some 
readers may want to skip). In section 3 we describe applications of Lagrange inversion to 
identities involving binomial coefficients, Catalan numbers, and their generalizations. In 
section 4, we give several proofs of Lagrange inversion, some of which are combinatorial.

A number of exercises giving additional results are included.
An excellent introduction to Lagrange inversion can be found in Chapter 5 of Stanley’s 

Enumerative Combinatorics, vol. 2. Other expository accounts of Lagrange inversion can 
be found in Hofbauer [35], Bergeron, Labelle, and Leroux [5, Chapter 3], Sokal [68], and 
Merlini, Sprugnoli, and Verri [51].

1.1. Formal power series

Although Lagrange inversion is often presented as a theorem of analysis (see, e.g., 
Whittaker and Watson [76, pp. 132–133]), we will work only with formal power series and 
formal Laurent series. A good account of formal power series can be found in Niven [55]; 
we sketch here some of the basic facts. Given a coefficient ring C, which for us will always 
be an integral domain containing the rational numbers, the ring C[[x]] of formal power 
series in the variable x with coefficients in C is the set of all “formal sums” 

∑∞
n=0 cnx

n, 
where cn ∈ C, with termwise addition and multiplication defined as one would expect 
using distributivity: 

∑∞
n=0 anx

n ·
∑∞

n=0 bnx
n =

∑∞
n=0 cnx

n, where cn =
∑n

i=0 aibn−i. 
Differentiation of formal power series is also defined termwise. A series 

∑∞
n=0 cnx

n has a 
multiplicative inverse if and only if c0 is invertible in C. We may also consider the ring 
of formal Laurent series C((x)) whose elements are formal sums 

∑∞
n=n0

cnx
n for some 

integer n0, i.e., formal sums 
∑∞

n=−∞ cnx
n in which only finitely many negative powers 

of x have nonzero coefficients. Henceforth we will omit the word “formal” and speak of 
power series and Laurent series.

We can iterate the power series and Laurent series ring constructions, obtaining, for 
example the ring C((x))[[y]] of power series in y whose coefficients are Laurent series 
in x. In any (possibly iterated) power series or Laurent series ring we will say that a set 
{fα} of series is summable if for any monomial m in the variables, the coefficient of m
is nonzero in only finitely many fα. In this case the sum 

∑
α f is well-defined and we 

will say that 
∑

α fα is summable. If we write 
∑

α fα as an iterated sum, then the order 
of summation is irrelevant. If f(x) =

∑
n cnx

n is a Laurent series in C((x)) and u ∈ C, 
where C may be a power series or Laurent series ring, then we say that the substitution 
of u for x is admissible if f(u) =

∑
n cnu

n is summable, and similarly for multivariable 
substitutions. Admissible substitutions are homomorphisms. If u is a power series or 
Laurent series g(x) then f(g(x)), if summable, is called the composition of f and g. If 
f(x) = c1x + c2x

2 + · · · , where c1 is invertible in C, then there is a unique power series 
g(x) = c−1

1 x + · · · such that f(g(x)) = x; this implies that g(f(x)) = x. We call g(x) the 
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