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The classical correlation inequality of Harris asserts that any 
two monotone increasing families on the discrete cube are non-
negatively correlated. In 1996, Talagrand [19] established a 
lower bound on the correlation in terms of how much the two 
families depend simultaneously on the same coordinates. Ta-
lagrand’s method and results inspired a number of important 
works in combinatorics and probability theory.
In this paper we present stronger correlation lower bounds 
that hold when the increasing families satisfy natural regu-
larity or symmetry conditions. In addition, we present several 
new classes of examples for which Talagrand’s bound is tight.
A central tool in the paper is a simple lemma asserting that for 
monotone events noise decreases correlation. This lemma gives 
also a very simple derivation of the classical FKG inequality 
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for product measures, and leads to a simplification of part of 
Talagrand’s proof.

© 2016 Published by Elsevier Inc.

1. Introduction

Definition 1.1. Let Ωn denote the discrete cube {0, 1}n, and identify elements of Ωn with 
subsets of [n] = {1, 2, . . . , n} in the natural manner. A family A ⊂ Ωn is increasing if 
(S ∈ A) ∧ (S ⊂ T ) implies T ∈ A (alternatively, if the characteristic function 1A is 
non-decreasing with respect to the natural partial order on Ωn).

One of the best-known correlation inequalities is Harris’ inequality [10] which asserts 
that any two increasing families A, B ⊂ Ωn are nonnegatively correlated, i.e., satisfy

Cov(A,B) = μ(A ∩ B) − μ(A)μ(B) ≥ 0,

where μ is the uniform measure on Ωn. In 1996, Talagrand [19] presented a lower bound 
on the correlation, in terms of influences of the variables on A, B.

Definition 1.2. The influence of the kth variable on A ⊂ Ωn is

Ik(A) = 2μ({x ∈ A|x⊕ ek /∈ A}),

where x ⊕ ek is obtained from x by replacing xk by 1 − xk. The total influence of A is 
I(A) =

∑n
k=1 Ik(A).

We also write W1(A, B) =
∑n

i=1 Ii(A)Ii(B).

Theorem 1.3 (Talagrand). Let A, B ⊂ Ωn be increasing. Then

Cov(A,B) ≥ c
n∑

i=1

Ii(A)Ii(B)
log(e/

∑n
i=1 Ii(A)Ii(B))

= cϕ (W1(A,B)) , (1)

where ϕ(x) = x/ log(e/x) and c is a universal constant.

Talagrand’s theorem and the central lemma used in its proof (Lemma 2.7 below) were 
used in several subsequent works in combinatorics and probability theory (e.g., [1,9,13,
20]), most notably in the BKS noise sensitivity theorem [2].

So far, only two classes of tightness examples for Talagrand’s lower bound are known. 
Talagrand [19] showed that his lower bound is tight when A, B are increasing Hamming 
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