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for product measures, and leads to a simplification of part of
Talagrand’s proof.
© 2016 Published by Elsevier Inc.

1. Introduction

Definition 1.1. Let §2,, denote the discrete cube {0, 1}", and identify elements of §2,, with
subsets of [n] = {1,2,...,n} in the natural manner. A family A C Q,, is increasing if
(S e A)A(S C T) implies T € A (alternatively, if the characteristic function 14 is
non-decreasing with respect to the natural partial order on €,,).

One of the best-known correlation inequalities is Harris’ inequality [10] which asserts
that any two increasing families A, B C §2,, are nonnegatively correlated, i.e., satisfy

Cov(A, B) = p(ANB) — p(A)u(B) = 0,

where p is the uniform measure on 2,,. In 1996, Talagrand [19] presented a lower bound
on the correlation, in terms of influences of the variables on A, B.

Definition 1.2. The influence of the kth variable on A C Q,, is
I(A) =2u({z € Alz D ey, ¢ A}),

where x @ ey, is obtained from x by replacing xj by 1 — xi. The total influence of A is

I(A) = 3k Te(A).
We also write Wi (A, B) = >0 | L;(A)L;(B).
Theorem 1.3 (Talagrand). Let A, B C ), be increasing. Then

L,(A)L(B) .
e/ S, LALB) 7

Cov(A,B) > CZ og Wi(A,B)), (1)

where o(x) = x/log(e/x) and c is a universal constant.

Talagrand’s theorem and the central lemma used in its proof (Lemma 2.7 below) were
used in several subsequent works in combinatorics and probability theory (e.g., [1,9,13,
20]), most notably in the BKS noise sensitivity theorem [2].

So far, only two classes of tightness examples for Talagrand’s lower bound are known.
Talagrand [19] showed that his lower bound is tight when A, B are increasing Hamming
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