

Contents lists available at ScienceDirect

Journal of Combinatorial Theory, Series A

www.elsevier.com/locate/jcta

Eigenvectors of random matrices: A survey

Sean O'Rourke^a, Van Vu^{b,1}, Ke Wang^{c,d}

- ^a Department of Mathematics, University of Colorado at Boulder, Boulder, CO 80309, USA
- ^b Department of Mathematics, Yale University, New Haven, CT 06520, USA
- ^c Jockey Club Institute for Advanced Study, Hong Kong University of Science and Technology, Hong Kong, China
- d Computing & Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, USA

ARTICLE INFO

ABSTRACT

Article history: Available online 15 July 2016

Keywords:
Eigenvectors
Random matrix
Random graph
Adjacency matrix
Random regular graph

Eigenvectors of large matrices (and graphs) play an essential role in combinatorics and theoretical computer science. The goal of this survey is to provide an up-to-date account on properties of eigenvectors when the matrix (or graph) is random.

Published by Elsevier Inc.

Contents

1.	Introduction
	1.1. Overview and outline
	1.2. Notation
2.	A toy case: The Gaussian orthogonal ensemble
3.	Direct comparison theorems
4.	Extremal coordinates
	4.1. The largest coordinate
	4.2. The smallest coordinate
5.	No-gaps delocalization

 $[\]label{lem:energy} E\text{-}mail\ addresses: sean.d.orourke@colorado.edu\ (S.\ O'Rourke),\ van.vu@yale.edu\ (V.\ Vu), kewang@ust.hk\ (K.\ Wang).$

V. Vu is supported by research grants DMS-0901216 and AFOSAR-FA-9550-09-1-0167.

6.	Rando	m symmetric matrices with non-zero mean	379
	6.1.	The largest eigenvector	380
	6.2.	Extremal coordinates	380
	6.3.	No-gaps delocalization	381
7.	Localiz	zed eigenvectors: Heavy-tailed and band random matrices	384
	7.1.	Heavy-tailed random matrices	384
	7.2.	Random band matrices	385
8.	Singul	ar vectors and eigenvectors of non-Hermitian matrices	386
9.	Rando	m regular graphs	387
10.	Proofs	for the Gaussian orthogonal ensemble	388
11.			396
	11.1.	Tools from linear algebra	396
	11.2.	Spectral norm	398
	11.3.	Local semicircle law	398
	11.4.	Smallest singular value	399
	11.5.	Projection lemma	399
	11.6.	Deterministic tools and the equation $Ax = By \dots$	401
12.	Proofs		401
	12.1.	Proof of Corollary 4.4	402
	12.2.	Proof of Theorem 4.7	402
13.	Proofs	of no-gaps delocalization results	407
	13.1.	Proof for Theorem 5.1	407
	13.2.	Proof of Corollary 5.4	412
14.	Proofs	for random matrices with non-zero mean	418
	14.1.	Proof of Theorem 6.4	418
	14.2.	Proof of Theorem 6.6	424
	14.3.	Proof of Theorem 6.8	430
	14.4.	Proof of Theorem 6.10	434
Acknowledgmen		nents	435
Apper	$\operatorname{ndix} \widetilde{A}$.	Proof of Lemma 10.3	435
Apper	ndix B.		436
Refere	ences .		439

1. Introduction

Eigenvectors of large matrices (and graphs) play an essential role in combinatorics and theoretical computer science. For instance, many properties of a graph can be deduced or estimated from its eigenvectors. In recent years, many algorithms have been developed which take advantage of this relationship to study various problems including spectral clustering [68,85], spectral partitioning [50,60], PageRank [57], and community detection [52,53].

The goal of this survey is to study basic properties of eigenvectors when the matrix (or graph) is random. As this survey is written with combinatorics/theoretical computer science readers in mind, we try to formalize the results in forms which are closest to their interest and give references for further extensions. Some of the results presented in this paper are new with proofs included, while many others have appeared in very recent papers.

We focus on the following models of random matrices.

Download English Version:

https://daneshyari.com/en/article/4655054

Download Persian Version:

https://daneshyari.com/article/4655054

<u>Daneshyari.com</u>