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1. Introduction

Eigenvectors of large matrices (and graphs) play an essential role in combinatorics and
theoretical computer science. For instance, many properties of a graph can be deduced or
estimated from its eigenvectors. In recent years, many algorithms have been developed
which take advantage of this relationship to study various problems including spectral
clustering [68,85], spectral partitioning [50,60], PageRank [57], and community detection
[52,53].

The goal of this survey is to study basic properties of eigenvectors when the matrix
(or graph) is random. As this survey is written with combinatorics/theoretical computer
science readers in mind, we try to formalize the results in forms which are closest to
their interest and give references for further extensions. Some of the results presented in
this paper are new with proofs included, while many others have appeared in very recent
papers.

We focus on the following models of random matrices.
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