Symmetric matrices, Catalan paths, and correlations

Bernd Sturmfels, Emmanuel Tsukerman, Lauren Williams
Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA

A R T I C L E I N F O

Article history:

Available online 15 July 2016

Keywords:

Schröder paths
Catalan paths
Aztec diamond
Correlation
Positive semidefinite matrix
Minors
Principal minors
Tiling
Elliptope

Abstract

Kenyon and Pemantle (2014) gave a formula for the entries of a square matrix in terms of connected principal and almost-principal minors. Each entry is an explicit Laurent polynomial whose terms are the weights of domino tilings of a half Aztec diamond. They conjectured an analogue of this parametrization for symmetric matrices, where the Laurent monomials are indexed by Catalan paths. In this paper we prove the Kenyon-Pemantle conjecture, and relate this to a statistics problem pioneered by Joe (2006). Correlation matrices are represented by an explicit bijection from the cube to the elliptope.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we present a formula for each entry of a symmetric $n \times n$ matrix $X=$ $\left(x_{i j}\right)$ as a Laurent polynomial in $\binom{n+1}{2}$ distinguished minors of X. Our result verifies a conjecture of Kenyon and Pemantle from [3]. Let I and J be subsets of $[n]=\{1,2, \ldots, n\}$ with $|I|=|J|$. Let X_{I}^{J} denote the minor of X with row indices I and column indices J.

[^0]Here the indices in I and J are always taken in increasing order. The following signed minors will be used:

$$
\begin{aligned}
p_{I} & :=(-1)^{\lfloor|I| / 2\rfloor} \cdot X_{I}^{I} \\
\text { and } \quad a_{i j \mid I} & :=(-1)^{\lceil|I| / 2\rceil} \cdot X_{i I}^{j I} \quad \text { for } \quad i, j \notin I, \quad i \neq j .
\end{aligned}
$$

Here $j I:=\{j\} \cup I$. We call p_{I} and $a_{i j \mid I}$ the principal and almost-principal minors, respectively. The minors $p_{I}, a_{i j \mid I}$ and $a_{j i \mid I}$ are called connected if $1 \leq i<j \leq n$ and $I=\{i+1, i+2, \ldots, j-2, j-1\}$. Note that p_{I} is not connected when 1 or n is in I. The 1×1-minors $a_{i j}:=a_{i j \mid \emptyset}=x_{i j}$ and $p_{k}=x_{k k}$ are connected when $|i-j|=1$ and $1 \leq k \leq n$.

These definitions make sense for every $n \times n$ matrix X, even if X is not symmetric. A general $n \times n$ matrix X has 2^{n} principal minors, of which $\binom{n-2}{2}+n$ are connected. It also has $n(n-1) 2^{n-2}$ almost-principal minors, of which $n(n-1)$ are connected. A symmetric $n \times n$ matrix has $\binom{n}{2} 2^{n-2}$ distinct almost-principal minors $a_{i j \mid I}$, of which $\binom{n}{2}$ are connected.

A Catalan path C is a path in the $x y$-plane which starts at $(0,0)$ and ends on the x-axis, always stays at or above the x-axis, and consists of steps northeast $(1,1)$ and southeast $(1,-1)$. We say that C has size n if its endpoints have distance $2 n-2$ from each other. Let \mathscr{C}_{n} denote the set of Catalan paths of size n. Its cardinality equals the Catalan number

$$
\left|\mathscr{C}_{n}\right|=\frac{1}{n}\binom{2 n-2}{n-1}, \quad \text { which is } 1,2,5,14,42,132,429,1430,4862 \quad \text { for } n=2, \ldots, 10
$$

Let G_{n} denote the planar graph whose nodes are the $\binom{n+1}{2}$ lattice points (x, y) with $x \geq y \geq 0$ and $x+y \leq 2 n-2$ even, and edges are northeast and southeast steps. Thus \mathscr{C}_{n} consists of the paths from $(0,0)$ to $(2 n-2,0)$ in G_{n}. We label the nodes and regions of G_{n} as follows. We assign the label j to the node $(2 j-2,0)$, the label $a_{i j \mid I}$ to the node $(i+j-2, j-i)$, and the label p_{I} to the region below that node. Here, $I=\{i+1, i+2, \ldots, j-1\}$. Thus, in the planar graph G_{n}, the connected principal and almost-principal minors of X are identified with the regions and nodes that are strictly above the x-axis.

The weight $W_{\mathscr{C}}(C)$ of a Catalan path C is a Laurent monomial, derived from the drawing of C in the graph G_{n}. Its numerator is the product of the labels $a_{i j \mid I}$ of the nodes of G_{n} that are local maxima or local minima of C, and its denominator is the product of the labels p_{I} of the regions which are either immediately below a local maximum or immediately above a local minimum. Thus $W_{\mathscr{C}}(C)$ is a Laurent monomial of degree ≤ 1. There is no lower bound on the degree due to minima on the x-axis; for instance, $\frac{a_{13 \mid 2} a_{35 \mid 4} a_{57 \mid 6} a_{79 \mid 8}}{p_{2} p_{3} p_{4} p_{5} p_{6} p_{7} p_{8}}$ has degree -3 and appears for $n=9$, associated to the path $U U D D U U D D U D D$.

https://daneshyari.com/en/article/4655057

Download Persian Version:

https://daneshyari.com/article/4655057

Daneshyari.com

[^0]: E-mail addresses: bernd@math.berkeley.edu (B. Sturmfels), e.tsukerman@berkeley.edu (E. Tsukerman), williams@math.berkeley.edu (L. Williams).

