

Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series A

www.elsevier.com/locate/jcta

Is there a symmetric version of Hindman's Theorem?

Journal of

Ethan Akin^a, Eli Glasner^b

 ^a Mathematics Department, The City College, 137 Street and Convent Avenue, New York City, NY 10031, USA
^b Department of Mathematics, Tel-Aviv University, Ramat Aviv, Israel

ARTICLE INFO

Article history: Received 10 June 2015 Available online 31 March 2016

Keywords: Ramsey theorem Hindman theorem Difference sets IP-sets SIP-sets Mild mixing

ABSTRACT

We show that there does not exist a symmetric version of Hindman's Theorem, or more explicitly, that the property of containing a symmetric IP-set is not divisible. We consider several related dynamics questions.

@ 2016 Elsevier Inc. All rights reserved.

1. IP and SIP sets

We will use $\mathbb{Z}, \mathbb{Z}_+, \mathbb{N}$ to stand for the sets of integers, nonnegative integers and positive integers, respectively.

For F a finite subset of \mathbb{Z} , we denote by $\sigma_F \in \mathbb{Z}$ the sum of the elements of F with the convention that $\sigma_{\emptyset} = 0$. Of course, if F is a nonempty subset of \mathbb{N} , then $\sigma_F \in \mathbb{N}$.

Call a subset A of \mathbb{Z} symmetric if -A = A where $-A = \{-a : a \in A\}$. For any subset A of \mathbb{Z} let $A_{\pm} = A \cup -A$ so that A_{\pm} is the smallest symmetric set which contains A. On the other hand, let $A_{+} = A \cap \mathbb{N}$, the positive part of A. Note that if A is symmetric then $A = A_{\pm}$ and $A \setminus \{0\} = (A_{+})_{\pm}$.

E-mail addresses: ethanakin@earthlink.net (E. Akin), glasner@math.tau.ac.il (E. Glasner).

For subsets A_1 , A_2 of \mathbb{Z} we let $A_1 + A_2 = \{a_1 + a_2 : a_1 \in A_1, a_2 \in A_2\}$ and $A_1 - A_2 = A_1 + (-A_2)$. If $A_2 = \{n\}$ we write $A_1 - n$ for $A_1 - A_2$.

Let A be a nonempty subset of \mathbb{Z} . We set

$$D(A) = \{a_1 - a_2 : a_1, a_2 \in A\} = A - A$$

IP(A) = { $\sigma_F : F$ a finite subset of A}
SIP(A) = D(IP(A)) = IP(A) - IP(A).

Clearly, $0 \in D(A)$ and D(A) is symmetric and so the same is true of SIP(A). If $0 \in A$ then $A \subset D(A)$. In general, $D(A) \cup A \cup -A = D(A \cup \{0\})$. In particular, $0 = \sigma_{\emptyset} \in IP(A)$ implies $IP(A) \subset SIP(A)$.

If $A \subset \mathbb{N}$ then $\operatorname{IP}(A) = \{0\} \cup \operatorname{IP}(A)_+$ since $0 = \sigma_{\emptyset} \in \operatorname{IP}(A)$. $\operatorname{IP}(A) = \operatorname{IP}(A \cup \{0\}) = \operatorname{IP}(A \setminus \{0\})$.

N.B. We include $0 = \sigma_{\emptyset}$ in IP(A) for A any nonempty subset of Z. This is a convenience which ensures, for example, that IP(A) is a subset of SIP(A) for $A \subset \mathbb{N}$. For $A \subset \mathbb{N}$, our set IP(A)₊ is what is more often called the IP set on A, following Definition 2.3 of [2].

Lemma 1.1. If B is a nonempty subset of \mathbb{N} then

$$SIP(B) = IP(B_{\pm}).$$

If A is a symmetric subset of \mathbb{Z} with $A \setminus \{0\}$ nonempty then

$$SIP(A_+) = IP(A).$$

Proof. If $F \subset B_{\pm}$ then

$$\sigma_F = \sigma_{F \cap B} + \sigma_{F \cap -B} = \sigma_{F \cap B} - \sigma_{(-F) \cap B}$$

Hence, $IP(B_{\pm}) \subset SIP(B)$.

For the reverse inclusion, let F_1 , F_2 be finite subsets of B.

$$\sigma_{F_1} - \sigma_{F_2} = \sigma_{F_1 \cup -F_2},$$

since F_1 and $-F_2$ are disjoint.

If A is symmetric and $A \setminus \{0\}$ is nonempty then A_+ is nonempty and the previous result applied to $B = A_+$ yields the second equation since $(A_+)_{\pm} = A \setminus \{0\}$ and $IP(A) = IP(A \setminus \{0\})$. \Box

We say that a subset $B \subset \mathbb{N}$ is

- a difference set if there exists an infinite subset A of \mathbb{N} such that $D(A)_+ \subset B$.
- an IP set if there exists an infinite subset A of \mathbb{N} such that $IP(A)_+ \subset B$.
- an SIP set if there exists an infinite subset A of \mathbb{N} such that $SIP(A)_+ \subset B$.

Download English Version:

https://daneshyari.com/en/article/4655077

Download Persian Version:

https://daneshyari.com/article/4655077

Daneshyari.com