

Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series A

www.elsevier.com/locate/jcta

Cayley digraphs of 2-genetic groups of odd prime-power order

Yi Wang, Yan-Quan Feng*, Jin-Xin Zhou

Department of Mathematics, Beijing Jiaotong University, Beijing, 100044, PR China

ARTICLE INFO

Article history: Received 13 January 2015 Available online 10 June 2016

Keywords: Cayley digraph 2-genetic group Automorphism group

ABSTRACT

A group is called 2-genetic if each normal subgroup of the group can be generated by two elements. Let G be a nonabelian 2-genetic group of order p^n for an odd prime pand a positive integer n. In this paper, we investigate connected Cayley digraphs Cay(G, S) for non-abelian 2-genetic groups G of odd order p^n , and determine their full automorphism groups $A = \operatorname{Aut}(\operatorname{Cay}(G, S))$ in the case when $\operatorname{Aut}(G,S) = \{ \alpha \in \operatorname{Aut}(G) \mid S^{\alpha} = S \}$ is a p'-group. It is shown that either Cay(G, S) is normal, that is, the right regular representation of G is normal in A, or p = 3, 5, 7, 11 and the largest normal p-subgroup $O_p(A)$ of A has order p^{n-1} with $ASL(2,p) \leq A/\Phi(O_p(A)) \leq AGL(2,p)$. Furthermore, a non-normal Cayley digraph with smallest order and smallest valency is constructed for each p = 3, 5, 7, 11, respectively. In particular, the underlying graphs of the above non-normal Cayley digraphs for p = 3, 7, 11 are half-arc-transitive, and they are the first constructions of half-arc-transitive nonnormal Cayley graphs of order a prime-power.

© 2016 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: yiwang8949@gmail.com (Y. Wang), yqfeng@bjtu.edu.cn (Y.-Q. Feng), jxzhou@bjtu.edu.cn (J.-X. Zhou).

 $\label{eq:http://dx.doi.org/10.1016/j.jcta.2016.05.001} 0097\text{-}3165 / \odot \ 2016 \ Elsevier \ Inc. \ All \ rights \ reserved.$

1. Introduction

For a finite simple digraph (directed graph) Γ , we use $V(\Gamma)$ and $\operatorname{Aut}(\Gamma)$ to denote its vertex set and full automorphism group, respectively. For $u, v \in V(\Gamma)$, (u, v) is the arc (directed edge) starting from u and ending at v in Γ , and $A(\Gamma)$ is the arc set of Γ . For a finite simple graph (undirected graph) X, denote by V(X), E(X) and $\operatorname{Aut}(X)$ the vertex set, the edge set and the full automorphism group of X, respectively. An ordered pair of adjacent vertices in X is called an *arc*, and we denote by A(X), the arc set of X. The graph X is said to be *vertex-transitive*, *edge-transitive* or *arc-transitive* (*symmetric*) if $\operatorname{Aut}(X)$ acts transitively on V(X), E(X) or A(X), respectively, and *half-arc-transitive* if it is vertex-transitive, edge-transitive. Let G be a permutation group on a set Ω and $\alpha \in \Omega$. Denote by G_{α} the stabilizer of α in G, that is, the subgroup of G fixing the point α . We say that G is *semiregular* on Ω if $G_{\alpha} = 1$ for every $\alpha \in \Omega$ and *regular* if G is transitive and semiregular.

Let G be a finite group and S a subset of G such that $1 \notin S$. The Cayley digraph $\Gamma = \operatorname{Cay}(G, S)$ of G with respect to S is defined as the digraph with vertex set $V(\Gamma) = G$ and arc set $A(\Gamma) = \{(g, sg) \mid g \in G, s \in S\}$. A Cayley digraph $\operatorname{Cay}(G, S)$ is connected if and only if $G = \langle S \rangle$, and if S is symmetric, that is, $S^{-1} = \{s^{-1} \mid s \in S\} = S$, then $\operatorname{Cay}(G, S)$ can be viewed as a graph by identifying the two opposite arcs (g, sg) and (sg, g) as an edge $\{g, sg\}$. Thus, Cayley graph is a special case of Cayley digraph. It is easy to see that $\operatorname{Aut}(\operatorname{Cay}(G, S))$ contains the right regular representation $\hat{G} = \{\hat{g} \mid g \in G\}$ of G, where \hat{g} is the map on G defined by $x \mapsto xg$, $x \in G$, and that \hat{G} is regular on the vertex set $V(\Gamma)$. This implies that a Cayley digraph is vertex-transitive. Also, it is easy to check that $\operatorname{Aut}(G, S) = \{\alpha \in \operatorname{Aut}(G) \mid S^{\alpha} = S\}$ is a subgroup of $\operatorname{Aut}(\operatorname{Cay}(G, S))_1$, the stabilizer of the vertex 1 in $\operatorname{Aut}(\operatorname{Cay}(G, S))$.

Determining the automorphism group of a Cayley digraph is fundamental in algebraic graph theory, but very difficult in general. Since a Cayley digraph $\operatorname{Cay}(G, S)$ is defined by G, a natural approach to determine its automorphism group is to understand the relationship between $\operatorname{Aut}(\operatorname{Cay}(G,S))$ and \hat{G} , for example, whether or not $\operatorname{Cay}(G,S)$ is normal. In particular, if $\operatorname{Cay}(G,S)$ is normal then $\operatorname{Aut}(\operatorname{Cay}(G,S))$ is a semidirect product of \hat{G} by the subgroup $\operatorname{Aut}(G,S)$ (see Proposition 2.1), and hence $\operatorname{Aut}(\operatorname{Cay}(G,S))$ is completely determined by $\operatorname{Aut}(G)$, which is much easier to determine. Thus a natural problem is to determine normality of Cayley digraphs for a given class of groups.

Wang et al. [29] obtained all disconnected normal Cayley graphs. The normality of Cayley graphs of cyclic groups of order a prime and of groups of order twice a prime was solved by Alspach [1] and Du et al. [12], respectively. Dobson [9] determined all non-normal Cayley graphs of order a product of two distinct primes. For a prime p, Dobson and Witte [11] determined all non-normal Cayley graphs of order p^2 , and Dobson and Kovács [10] determined the full automorphism groups of Cayley digraphs of \mathbb{Z}_p^3 . The normality of Cayley graphs of finite simple groups was investigated by Fang, Praeger and Wang [15], and the normality of Cayley digraphs of finite simple groups of small Download English Version:

https://daneshyari.com/en/article/4655094

Download Persian Version:

https://daneshyari.com/article/4655094

Daneshyari.com