

Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series A

www.elsevier.com/locate/jcta

Forbidding Hamilton cycles in uniform hypergraphs $\stackrel{\mbox{\tiny{\scale}}}{\rightarrow}$

Journal of

Jie Han^a, Yi Zhao^b

 ^a Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, 05508-090, São Paulo, Brazil
^b Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA

ARTICLE INFO

Article history: Received 17 August 2015 Available online 21 June 2016

Keywords: Hamilton cycles Hypergraphs Perfect matchings

ABSTRACT

For $1 \leq d \leq \ell < k$, we give a new lower bound for the minimum *d*-degree threshold that guarantees a Hamilton ℓ -cycle in *k*-uniform hypergraphs. When $k \geq 4$ and $d < \ell = k - 1$, this bound is larger than the conjectured minimum *d*-degree threshold for perfect matchings and thus disproves a well-known conjecture of Rödl and Ruciński. Our (simple) construction generalizes a construction of Katona and Kierstead and the space barrier for Hamilton cycles.

@ 2016 Elsevier Inc. All rights reserved.

1. Introduction

The study of Hamilton cycles is an important topic in graph theory. A classical result of Dirac [4] states that every graph on $n \ge 3$ vertices with minimum degree n/2 contains a Hamilton cycle. In recent years, researchers have worked on extending this theorem to hypergraphs – see recent surveys [15,18,26].

 $^{^{\}pm}$ The first author is supported by FAPESP (Proc. 2014/18641-5, 2015/07869-8). The second author is partially supported by NSF grant DMS-1400073.

E-mail addresses: jhan@ime.usp.br (J. Han), yzhao6@gsu.edu (Y. Zhao).

To define Hamilton cycles in hypergraphs, we need the following definitions. Given $k \geq 2$, a k-uniform hypergraph (in short, k-graph) consists of a vertex set V and an edge set $E \subseteq \binom{V}{k}$, where every edge is a k-element subset of V. Given a k-graph H with a set S of d vertices (where $1 \leq d \leq k - 1$) we define $\deg_H(S)$ to be the number of edges containing S (the subscript H is omitted if it is clear from the context). The minimum d-degree $\delta_d(H)$ of H is the minimum of $\deg_H(S)$ over all d-vertex sets S in H. For $1 \leq \ell \leq k-1$, a k-graph is a called an ℓ -cycle if its vertices can be ordered cyclically such that each of its edges consists of k consecutive vertices. In k-graphs, a (k-1)-cycle is often called a tight cycle. We say that a k-graph contains a Hamilton ℓ -cycle if it contains an ℓ -cycle as a spanning subhypergraph. Note that a Hamilton ℓ -cycle of a k-graph on n vertices contains exactly $n/(k - \ell)$ edges, implying that $k - \ell$ divides n.

Let $1 \leq d, \ell \leq k - 1$. For $n \in (k - \ell)\mathbb{N}$, we define $h_d^\ell(k, n)$ to be the smallest integer h such that every n-vertex k-graph H satisfying $\delta_d(H) \geq h$ contains a Hamilton ℓ -cycle. Note that whenever we write $h_d^\ell(k, n)$, we always assume that $1 \leq d \leq k - 1$. Moreover, we often write $h_d(k, n)$ instead of $h_d^{k-1}(k, n)$ for simplicity. Similarly, for $n \in k\mathbb{N}$, we define $m_d(k, n)$ to be the smallest integer m such that every n-vertex k-graph H satisfying $\delta_d(H) \geq m$ contains a perfect matching. The problem of determining $m_d(k, n)$ has attracted much attention recently and the asymptotic value of $m_d(k, n)$ is conjectured as follows. Note that the o(1) term refers to a function that tends to 0 as $n \to \infty$ throughout the paper.

Conjecture 1.1. [6,14] For $1 \le d \le k-1$ and $k \mid n$,

$$m_d(k,n) = \left(\max\left\{ \frac{1}{2}, 1 - \left(1 - \frac{1}{k}\right)^{k-d} \right\} + o(1) \right) \binom{n-d}{k-d}.$$

Conjecture 1.1 has been confirmed [1,17] for min $\{k - 4, k/2\} \le d \le k - 1$ (the exact values of $m_d(k, n)$ are also known in some cases, e.g., [23,25]). On the other hand, $h_d^\ell(k, n)$ has also been extensively studied [2,3,5,7–13,16,19,20,22,24]. In particular, Rödl, Ruciński and Szemerédi [20,22] showed that $h_{k-1}(k, n) = (1/2 + o(1))n$. The same authors proved in [21] that $m_{k-1}(k, n) = (1/2 + o(1))n$ (later they determined $m_{k-1}(k, n)$ exactly [23]). This suggests that the values of $h_d(k, n)$ and $m_d(k, n)$ are closely related and inspires Rödl and Ruciński to make the following conjecture.

Conjecture 1.2. [18, Conjecture 2.18] Let $k \ge 3$ and $1 \le d \le k-2$. Then

$$h_d(k,n) = m_d(k,n) + o(n^{k-d}).$$

By using the value of $m_d(k, n)$ from Conjecture 1.1, Kühn and Osthus stated this conjecture explicitly for the case d = 1.

Download English Version:

https://daneshyari.com/en/article/4655095

Download Persian Version:

https://daneshyari.com/article/4655095

Daneshyari.com