Contents lists available at ScienceDirect
Journal of Combinatorial Theory, Series A

Large sets of complex and real equiangular lines<br>Jonathan Jedwab ${ }^{\text {a }}$, Amy Wiebe ${ }^{\text {b }}$<br>a Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada<br>${ }^{\text {b }}$ Department of Mathematics, University of Washington, Box 354350, Seattle, WA 98195-4350, USA

## A R T I C L E I N F O

## Article history:

Received 20 January 2015
Available online 28 March 2015

## Keywords:

Equiangular lines
Complex space
Real space
Mutually unbiased bases


#### Abstract

Large sets of equiangular lines are constructed from sets of mutually unbiased bases, over both the complex and the real numbers.


© 2015 Elsevier Inc. All rights reserved.

## 1. Introduction

The angle between vectors $\boldsymbol{x}_{j}$ and $\boldsymbol{x}_{k}$ of unit norm in $\mathbb{C}^{d}$ is $\arccos \left|\left\langle\boldsymbol{x}_{j}, \boldsymbol{x}_{k}\right\rangle\right|$, where $\langle\cdot, \cdot\rangle$ is the standard Hermitian inner product. A set of $m$ distinct lines in $\mathbb{C}^{d}$ through the origin, represented by vectors $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}$ of equal norm, is equiangular if for some real constant $a$ we have

$$
\left|\left\langle\boldsymbol{x}_{j}, \boldsymbol{x}_{k}\right\rangle\right|=a \quad \text { for all } j \neq k
$$

The number of equiangular lines in $\mathbb{C}^{d}$ is at most $d^{2}$ [4], and when the vectors are further constrained to lie in $\mathbb{R}^{d}$ this number is at most $d(d+1) / 2$ (attributed to Gerzon in [9]).

[^0]It is an open question, in both the complex and real case, whether the upper bound can be attained for infinitely many $d$, although in both cases $\Theta\left(d^{2}\right)$ equiangular lines exist for all $d$. Specifically, König [8] constructed $d^{2}-d+1$ equiangular lines in $\mathbb{C}^{d}$ where $d-1$ is a prime power, and de Caen [3] constructed $2(d+1)^{2} / 9$ equiangular lines in $\mathbb{R}^{d}$ where $(d+1) / 3$ is twice a power of 4 . By extending vectors using zero entries as necessary, we can derive sets of $\Theta\left(d^{2}\right)$ equiangular lines from these direct constructions for all $d$.

Two orthogonal bases $\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{d}\right\},\left\{\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{d}\right\}$ for $\mathbb{C}^{d}$ are unbiased if

$$
\begin{equation*}
\frac{\left|\left\langle\boldsymbol{x}_{j}, \boldsymbol{y}_{k}\right\rangle\right|}{\left\|\boldsymbol{x}_{j}\right\| \cdot\left\|\boldsymbol{y}_{k}\right\|}=\frac{1}{\sqrt{d}} \quad \text { for all } j, k \tag{1}
\end{equation*}
$$

A set of orthogonal bases is a set of mutually unbiased bases (MUBs) if all pairs of distinct bases are unbiased.

The number of MUBs in $\mathbb{C}^{d}$ is at most $d+1$ [4, Table I], which can be attained when $d$ is a prime power by a variety of methods [5,7,10]. The number of MUBs in $\mathbb{R}^{d}$ is at most $d / 2+1$ [4, Table I], which can be attained when $d$ is a power of $4[1,2]$.

The authors recently gave a direct construction of $d^{2} / 4$ equiangular lines in $\mathbb{C}^{d}$, where $d / 2$ is a prime power [6]. We show here how to generalize the underlying construction to give $\Theta\left(d^{2}\right)$ equiangular lines in $\mathbb{C}^{d}$ and $\mathbb{R}^{d}$ directly from sets of complex and real MUBs.

## 2. The construction

We associate an ordered set of $m$ vectors in $\mathbb{C}^{d}$ with the $m \times d$ matrix formed from the vector entries, using the ordering of the set to determine the ordering of the vectors.

Theorem 1. Suppose that $B_{1}, B_{2}, \ldots, B_{r}$ form a set of $r$ MUBs in $\mathbb{C}^{d}$, each of whose vectors has all entries of unit magnitude, where $r \leq d$. Let $a_{1}, a_{2}, \ldots, a_{t}$ be constants in $\mathbb{C}$, where $t \geq 1$. Let $B_{j}(v)$ be the set of $d$ vectors formed by multiplying entry $j$ of each vector of $B_{j}$ by $v \in \mathbb{C}$, and let $L(v)=\cup_{j=1}^{r} B_{j}(v)$ (considered as an ordered set). Then all inner products between distinct vectors among the rd vectors of

$$
\left[\begin{array}{lllll}
L\left(a_{1}\right) & L\left(a_{2}\right) & \ldots & L\left(a_{t}\right) & L\left(t+1-\sum_{j=1}^{t} a_{j}\right)
\end{array}\right]
$$

in $\mathbb{C}^{(t+1) d}$ have magnitude $\sum_{j=1}^{t}\left|a_{j}-1\right|^{2}+\left|\sum_{j=1}^{t}\left(a_{j}-1\right)\right|^{2}$ or $(t+1) \sqrt{d}$.
Proof. Write $A=\left\{a_{1}, a_{2}, \ldots, a_{t}, t+1-\sum_{j=1}^{t} a_{j}\right\}$ for the set of arguments $v \in \mathbb{C}$ taken by $L(v)$ in the construction. We consider two cases, according to whether distinct vectors of $L(v)$ originate from the same basis or from distinct bases.

In the first case, consider the inner product of distinct vectors of $L(v)$ constructed from vectors from the same basis $B_{j}$. Since the original vectors are orthogonal, this inner product is $z\left(|v|^{2}-1\right)$ for some $z$ of unit magnitude that depends only on the original two

# https://daneshyari.com/en/article/4655117 

Download Persian Version:
https://daneshyari.com/article/4655117

Daneshyari.com


[^0]:    E-mail addresses: jed@sfu.ca (J. Jedwab), awiebe@math.washington.edu (A. Wiebe).

