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Haglund’s conjecture implicitly defines two statistics on or-

(I)(eywords: . dered set partitions and states that they are equidistributed.
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Inversions The implied inversion statistic is equivalent to a statistic on
Major index ordered set partitions studied by Steingrimsson, Ishikawa,
Stirling numbers Kasraoui, and Zeng and is known to have a nice distribu-
Bijection tion in terms of ¢-Stirling numbers. The resulting major index
exhibits a combinatorial relationship between g¢-Stirling num-
bers and the Euler-Mahonian distribution on the symmetric
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1. Introduction

Let &,, denote the symmetric group, i.e. the group of permutations of {1,2,...,n}
under composition. Given a permutation o = oy ...0, € 6,,, we define the descent and
ascent sets of o to be

Des(o)={i € {1,2,....,n—1}:0; > 0;41} and
Asc(o) ={ie{1,2,...,n =1} : 0; < 0441}
The set of inversions of o, Inv(o), is defined by
Inv(o) ={(,7): 1 <i<j<m, o, >0;}
Then
4,0

Inv"" ={(i,j):i<j<n, o, >0}

is the set of inversions that start at position ¢ and
v = {(i,§): 1 <i<j, 05 >0}

is the set of inversions that end at position j. We let

des(o) =| Des(0)| inv(c) =|Inv(o)|,

asc(o) =] Asc(o)| inv"? (o) = | Inv"? ()],

maj(c) = Z i inv?7 () = | Inv™ ()]
i€Des(o)

The statistics des(o), asc(o), maj(o), and inv(o) are known as the descent number, ascent
number, major index, and inversion number of o, respectively.

This paper was motivated by the following conjecture of Jim Haglund (personal com-
munication, October 2012).

des(o)
Z g™ H (1+m> Z g H ( ) (1)

eSS, 1€Des (o) oceS,
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