

Contents lists available at ScienceDirect

Journal of Combinatorial Theory, Series A

www.elsevier.com/locate/jcta

Wreath determinants for group–subgroup pairs

Kei Hamamoto ^a, Kazufumi Kimoto ^{b,1}, Kazutoshi Tachibana ^c, Masato Wakayama ^{d,2}

^a Kikugawa Junior High School, 1-2 Shimookaeda, Kikugawa, Shimonoseki,

Yamaguchi 750-0317, Japan

^b Department of Mathematical Sciences, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan

^c Shuyukan High School, 6-1-10 Nishijin, Sawara-Ku, Fukuoka 814-8510, Japan

^d Institute of Mathematics for Industry, Kyushu University, 774 Motooka, Fukuoka 819-0395, Japan

ARTICLE INFO

Article history: Received 10 June 2014 Available online 23 February 2015

Dedicated to Professor Roger Howe on the occasion of his 70th birthday

Keywords: Group determinants Wreath determinants Finite groups Symmetric groups Characters Cayley graphs

ABSTRACT

The aim of the present paper is to generalize the notion of the group determinants for finite groups. For a finite group Gand its subgroup H, one may define a rectangular matrix of size $\#H \times \#G$ by $X = (x_{hg^{-1}})_{h \in H, g \in G}$, where $\{x_g \mid g \in G\}$ are indeterminates indexed by the elements in G. Then, we define an invariant $\Theta(G, H)$ for a given pair (G, H) by the k-wreath determinant of the matrix X, where k is the index of H in G. The k-wreath determinant of an n by kn matrix is a relative invariant of the left action by the general linear group of order n and of the right action by the wreath product of two symmetric groups of order k and n. Since the definition of $\Theta(G, H)$ is ordering-sensitive, the representation theory of symmetric groups is naturally involved. When Gis abelian, if we specialize the indeterminates to powers of another variable q suitably, then $\Theta(G, H)$ factors into the product of a power of q and polynomials of the form $1 - q^r$

http://dx.doi.org/10.1016/j.jcta.2015.02.002 0097-3165/© 2015 Elsevier Inc. All rights reserved.

E-mail addresses: hamakei48484848@gmail.com (K. Hamamoto), kimoto@math.u-ryukyu.ac.jp

⁽K. Kimoto), tachibana-k3@fku.ed.jp (K. Tachibana), wakayama@imi.kyushu-u.ac.jp (M. Wakayama).

 $^{^1}$ Partially supported by Grant-in-Aid for Scientific Research (C) No. 25400044 of JSPS and by CREST, JST.

 $^{^2\,}$ Partially supported by Grant-in-Aid for Challenging Exploratory Research No. 25610006 of JSPS and by CREST, JST.

for various positive integers r. We also give examples for nonabelian group–subgroup pairs. \bigcirc 2015 Elequier Inc. All rights reserved

@ 2015 Elsevier Inc. All rights reserved.

1. Introduction

It is Frobenius who initiated the character theory of finite groups [2]. At the very first stage of his study, the group determinant $\Theta(G)$ of a given finite group G, which is defined as the determinant

$$\Theta(G) := \det(x_{uv^{-1}})_{u \ v \in G} \tag{1}$$

of the group matrix $(x_{uv^{-1}})_{u,v\in G}$, played an important role. Here $\{x_g \mid g \in G\}$ are indeterminates indexed by the elements in G. (One should note that the definition of $\Theta(G)$ is independent of the choice of the ordering of elements in G.) Indeed, the group determinant $\Theta(G)$ reflects the structure of the regular representation of G, which contains all the equivalence classes of the irreducible representations of G. The factorization of $\Theta(G)$ corresponds to the irreducible decomposition of the regular representation, and the irreducible character values appear as coefficients in the factors. In 1991, Formanek and Sibley [3] showed that two groups are isomorphic if and only if their group determinants coincide under a suitable correspondence between the sets of indeterminates for these groups:

$$\Theta(G) = \Theta(G') \iff G \cong G'.$$
⁽²⁾

Namely, the group determinant is a perfect invariant for finite groups.

Let H be a subgroup of a finite group G, set n := #H, and k := #G/H denotes the index of H in G. In this paper, we extend the notion of group determinants. Actually, we define an invariant $\Theta(G, H)$ for the pair (G, H), G being a finite group and H its subgroup, by employing the *wreath determinant* [5]. For a positive integer k, the k-wreath determinant wrdet_k is a polynomial function on the set of n by kn matrices for each positive integer n characterized by (i) multilinearity in column vectors, (ii) relative GL_n -invariance from the left, and (iii) \mathfrak{S}_k^n -invariance with respect to permutations in columns, \mathfrak{S}_k being the symmetric group of order k (see Section 2.1 for the precise definition). Roughly, $\Theta(G, H)$ is defined to be

$$\Theta(G,H) := \operatorname{wrdet}_k \left(x_{hg^{-1}} \right)_{\substack{h \in H \\ g \in G}}.$$

In fact, since wrdet_k is *not* a relative invariant under general permutations in columns (i.e. the action of \mathfrak{S}_{kn} from the right), we should take account of the *ordering* of G to define $\Theta(G, H)$. This is a crucial difference from $\Theta(G)$. We note that $\Theta(G, G)$ is nothing but the original group determinant $\Theta(G)$ since the 1-wreath determinant is the ordinary determinant. Download English Version:

https://daneshyari.com/en/article/4655220

Download Persian Version:

https://daneshyari.com/article/4655220

Daneshyari.com