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The aim of the present paper is to generalize the notion of 
the group determinants for finite groups. For a finite group G
and its subgroup H, one may define a rectangular matrix of 
size #H × #G by X =

(
xhg−1

)
h∈H,g∈G

, where {xg | g ∈ G}
are indeterminates indexed by the elements in G. Then, we 
define an invariant Θ(G, H) for a given pair (G, H) by the 
k-wreath determinant of the matrix X, where k is the index 
of H in G. The k-wreath determinant of an n by kn matrix is 
a relative invariant of the left action by the general linear 
group of order n and of the right action by the wreath 
product of two symmetric groups of order k and n. Since the 
definition of Θ(G, H) is ordering-sensitive, the representation 
theory of symmetric groups is naturally involved. When G
is abelian, if we specialize the indeterminates to powers of 
another variable q suitably, then Θ(G, H) factors into the 
product of a power of q and polynomials of the form 1 − qr
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for various positive integers r. We also give examples for non-
abelian group–subgroup pairs.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

It is Frobenius who initiated the character theory of finite groups [2]. At the very 
first stage of his study, the group determinant Θ(G) of a given finite group G, which is 
defined as the determinant

Θ(G) := det
(
xuv−1

)
u,v∈G

(1)

of the group matrix 
(
xuv−1

)
u,v∈G

, played an important role. Here {xg | g ∈ G} are inde-
terminates indexed by the elements in G. (One should note that the definition of Θ(G)
is independent of the choice of the ordering of elements in G.) Indeed, the group deter-
minant Θ(G) reflects the structure of the regular representation of G, which contains all 
the equivalence classes of the irreducible representations of G. The factorization of Θ(G)
corresponds to the irreducible decomposition of the regular representation, and the irre-
ducible character values appear as coefficients in the factors. In 1991, Formanek and Sib-
ley [3] showed that two groups are isomorphic if and only if their group determinants coin-
cide under a suitable correspondence between the sets of indeterminates for these groups:

Θ(G) = Θ(G′) ⇐⇒ G ∼= G′. (2)

Namely, the group determinant is a perfect invariant for finite groups.
Let H be a subgroup of a finite group G, set n := #H, and k := #G/H denotes 

the index of H in G. In this paper, we extend the notion of group determinants. Ac-
tually, we define an invariant Θ(G, H) for the pair (G, H), G being a finite group and 
H its subgroup, by employing the wreath determinant [5]. For a positive integer k, the 
k-wreath determinant wrdetk is a polynomial function on the set of n by kn matrices 
for each positive integer n characterized by (i) multilinearity in column vectors, (ii) rel-
ative GLn-invariance from the left, and (iii) Sn

k -invariance with respect to permutations 
in columns, Sk being the symmetric group of order k (see Section 2.1 for the precise 
definition). Roughly, Θ(G, H) is defined to be

Θ(G,H) := wrdetk
(
xhg−1

)
h∈H
g∈G

.

In fact, since wrdetk is not a relative invariant under general permutations in columns 
(i.e. the action of Skn from the right), we should take account of the ordering of G to 
define Θ(G, H). This is a crucial difference from Θ(G). We note that Θ(G, G) is nothing 
but the original group determinant Θ(G) since the 1-wreath determinant is the ordinary 
determinant.
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