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Recently, G.E. Andrews and M. Merca considered a truncated 
version of Euler’s pentagonal number theorem and obtained 
a nonnegativity result. They asked the same question on a 
truncated Jacobi triple product identity, which can be found 
as a conjecture in a paper of V.J.W. Guo and J. Zeng. In this 
paper, we provide an answer to the question, which is purely 
combinatorial. We also provide a combinatorial proof of the 
main theorem in the paper of Andrews and Merca.
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1. Introduction

One of the well-known theorems in the partition theory is the following pentagonal 
number theorem.

Theorem 1.1 (Euler’s pentagonal number theorem). We have

∞∑
n=−∞

(−1)nqn(3n−1)/2 = (q; q)∞.
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This identity leads to

1
(q; q)∞

∞∑
n=−∞

(−1)nqn(3n−1)/2 = 1. (1.1)

Here and throughout this paper, we use the following customary q-series notation:

(a; q)0 := 1,

(a; q)∞ :=
∞∏
k=0

(
1 − aqk

)
,

(a; q)n := (a; q)∞
(aqn; q)∞

for any n,

[
n

k

]
:=

[
n

k

]
q

:=
{

0, if k < 0 or k > n,
(q;q)n

(q;q)k(q;q)n−k
, otherwise.

Recently, G.E. Andrews and M. Merca considered a truncated version of (1.1) and 
obtained the following result:

1
(q; q)∞

k−1∑
n=0

(−1)nqn(3n+1)/2(1 − q2n+1)

= 1 + (−1)k−1
∞∑

n=1

q
(k
2
)
+(k+1)n

(q; q)n

[
n− 1
k − 1

]
, (1.2)

from which they deduced the following partition theorem.

Theorem 1.2. (See [4, Theorem 1.1].) For n > 0, k ≥ 1

(−1)k−1
k−1∑
j=0

(−1)j
(
p
(
n− j(3j + 1)/2

)
− p

(
n− j(3j + 5)/2 − 1

))
= Mk(n)

where Mk(n) is the number of partitions of n in which k is the least integer that is not 
a part and there are more parts > k than there are < k.

Theorem 1.1 has the following generalization.

Theorem 1.3 (The Jacobi triple product identity). For z �= 0,

∞∑
n=−∞

(−z)nq
(n
2
)
= (z; q)∞(q/z; q)∞(q; q)∞.
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