

Contents lists available at ScienceDirect

Journal of Combinatorial Theory, Series A

www.elsevier.com/locate/jcta

A random version of Sperner's theorem

József Balogh ^{a,b,1}, Richard Mycroft ^c, Andrew Treglown ^c

- ^a Department of Mathematics, University of Illinois, Urbana, IL 61801, USA
- ^b Bolyai Institute, University of Szeged, Szeged, Hungary
- ^c University of Birmingham, United Kingdom

ARTICLE INFO

Article history: Received 18 April 2014 Available online 14 August 2014

Keywords: Boolean lattice Antichain Container method

ABSTRACT

Let $\mathcal{P}(n)$ denote the power set of [n], ordered by inclusion, and let $\mathcal{P}(n,p)$ be obtained from $\mathcal{P}(n)$ by selecting elements from $\mathcal{P}(n)$ independently at random with probability p. A classical result of Sperner [12] asserts that every antichain in $\mathcal{P}(n)$ has size at most that of the middle layer, $\binom{n}{\lfloor n/2\rfloor}$. In this note we prove an analogous result for $\mathcal{P}(n,p)$: If $pn \to \infty$ then, with high probability, the size of the largest antichain in $\mathcal{P}(n,p)$ is at most $(1+o(1))p\binom{n}{\lfloor n/2\rfloor}$. This solves a conjecture of Osthus [9] who proved the result in the case when $pn/\log n \to \infty$. Our condition on p is best-possible. In fact, we prove a more general result giving an upper bound on the size of the largest antichain for a wider range of values of p.

© 2014 Elsevier Inc. All rights reserved.

We write [n] for the set of natural numbers up to n, and $\mathcal{P}(n)$ for the power set of [n]. Also, for any $0 \le k \le n$ we write $\binom{[n]}{k}$ for the subset of $\mathcal{P}(n)$ consisting of all sets of size k. A subset $\mathcal{A} \subseteq \mathcal{P}(n)$ is an antichain if for any $A, B \in \mathcal{A}$ with $A \subseteq B$ we have A = B. So $\binom{[n]}{k}$ is an antichain for any $0 \le k \le n$; Sperner's theorem [12] states that

E-mail addresses: jobal@math.uiuc.edu (J. Balogh), r.mycroft@bham.ac.uk (R. Mycroft), a.c.treglown@bham.ac.uk (A. Treglown).

Research is partially supported by Simons Fellowship, NSF CAREER Grant DMS-0745185, Arnold O. Beckman Research Award (UIUC Campus Research Board 13039) and Marie Curie FP7-PEOPLE-2012-IIF 327763.

in fact no antichain in $\mathcal{P}(n)$ has size larger than $\binom{n}{\lfloor n/2 \rfloor}$. Our main theorem is a random version of Sperner's theorem. For this, let $\mathcal{P}(n,p)$ be the set obtained from $\mathcal{P}(n)$ by selecting elements randomly with probability p and independently of all other choices. Write $m := \binom{n}{\lfloor n/2 \rfloor}$. Roughly speaking, our main result asserts that if p > C/n for some constant C, then with high probability, the largest antichain in $\mathcal{P}(n,p)$ is approximately the same size as the 'middle layer' in $\mathcal{P}(n,p)$.

Theorem 1. For any $\varepsilon > 0$ there exists a constant C such that if p > C/n then with high probability the largest antichain in $\mathcal{P}(n,p)$ has size at most $(1+\varepsilon)pm$.

(Here, by 'with high probability' we mean with probability tending to 1 as n tends to infinity.)

The model $\mathcal{P}(n,p)$ was first investigated by Rényi [10] who determined the probability threshold for the property that $\mathcal{P}(n,p)$ is not itself an antichain, thereby answering a question of Erdős. The size of the largest antichain in $\mathcal{P}(n,p)$ for p above this threshold was first studied by Kohayakawa and Kreuter [6]. In [6] they raised the question of which values of p does the conclusion of Theorem 1 hold. Osthus [9] proved Theorem 1 in the case when $pn/\log n \to \infty$ and conjectured that this can be replaced by $pn \to \infty$. (So Theorem 1 resolves this conjecture.) Moreover, Osthus showed that, for a fixed c > 0, if p = c/n then with high probability the largest antichain in $\mathcal{P}(n,p)$ has size at least $(1+o(1))(1+e^{-c/2})p\binom{n}{\lfloor n/2\rfloor}$. So the bound on p in Theorem 1 is best-possible up to the constant C. There have also been a number of results concerning the length of (the longest) chains in $\mathcal{P}(n,p)$ and related models of random posets (see, for example, [2,7,8]). Instead of proving Theorem 1 directly we prove the following more general result.

Theorem 2. Let $n \in \mathbb{N}$ and $m := \binom{n}{\lfloor n/2 \rfloor}$. For any $\varepsilon > 0$ and $t \in \mathbb{N}$, there exists a constant C such that if $p > C/n^t$ then with high probability the largest antichain in $\mathcal{P}(n,p)$ has size at most $(1 + \varepsilon)pmt$.

Osthus [9] proved this result in the case when $p(n/t)^t/\log n \to \infty$. (In fact, Osthus's result allows for t to be an integer function, see [9] for the precise statement.) Moreover, Osthus showed that, for $1/n^t \ll p \ll 1/n^{t-1}$, with high probability, $\mathcal{P}(n,p)$ has an antichain of size at least (1+o(1))pmt (so Theorem 2 is 'tight' in this window of p).

The method of proof of Theorem 2 also allows us to estimate the number of antichains in $\mathcal{P}(n)$ of certain fixed sizes.

Proposition 3. Fix any $t \in \mathbb{N}$, and suppose that $m/n^t \ll s \ll m/n^{t-1}$. Then the number of antichains of size s in $\mathcal{P}(n)$ is $\binom{(t+o(1))m}{s}$.

To prove Theorem 2, let G be the graph with vertex set $\mathcal{P}(n)$ in which distinct sets A and B are adjacent if $A \subseteq B$ or $B \subseteq A$. Then an antichain in $\mathcal{P}(n)$ is precisely an independent set in G. We follow the 'hypergraph container' approach (see, for example, [1,11]): indeed, we show that all independent sets in G are contained within a fairly small

Download English Version:

https://daneshyari.com/en/article/4655262

Download Persian Version:

https://daneshyari.com/article/4655262

<u>Daneshyari.com</u>