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Let G be an r-uniform hypergraph. When is it possible to 
orient the edges of G in such a way that every p-set of vertices 
has some p-degree equal to 0? (The p-degrees generalise for 
sets of vertices what in-degree and out-degree are for single 
vertices in directed graphs.) Caro and Hansberg asked if the 
obvious Hall-type necessary condition is also sufficient.
Our main aim is to show that this is true for r large (for 
given p), but false in general. Our counterexample is based 
on a new technique in sparse Ramsey theory that may be of 
independent interest.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

When does a graph G have an orientation such that every out-degree is at most k? 
An obvious necessary condition is that |E(H)| ≤ k|V (H)| for every subgraph H ⊂ G. 
Indeed, suppose G has such an orientation and H ⊂ G. Inside H the sum of out-degrees 
equals the number of edges. Moreover, each vertex contributes at most k to this sum, 
hence the condition. Hakimi proved that this condition is in fact sufficient.
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Theorem A. (See Hakimi [3].) Let G be a graph and k ≥ 0 an integer. Then G has an 
orientation such that every vertex has out-degree at most k if and only if all subgraphs 
H ⊂ G satisfy |E(H)| ≤ k|V (H)|.

In fact, Hakimi proved a slightly stronger result that determines all possible out-degree 
sequences produced by orientations of a given graph G. His proof uses induction on the 
number of edges, but the weaker statement given above is a straightforward consequence 
of Hall’s marriage theorem.

What about hypergraphs? Suppose an r-uniform hypergraph G (i.e. a family of r-sets) 
is given an orientation, by which we mean that for each edge e one ordering of the vertices 
of e is chosen. This ordering is called the orientation of e. Note that each edge has exactly 
r! possible orientations. If r = 2 then this coincides with the usual definition of graph 
orientation. We will often denote an orientation of G by D(G) and the corresponding 
orientation of an edge e by D(e).

Given an orientation D(G), a vertex v and i ∈ [r] = {1, 2, . . . , r}, the i-degree of v, 
written di(v), is the number of edges e such that v is in the i-th position of D(e). Note 
that if r = 2 then d1(v) is the out-degree and d2(v) is the in-degree of v.

When does an r-uniform hypergraph G have an orientation such that d1(v) ≤ k for 
every vertex v? Again, an obvious necessary condition is that |E(H)| ≤ k|V (H)| for 
every subgraph H ⊂ G (where as usual H is a subgraph of G if V (H) ⊂ V (G) and 
E(H) ⊂ E(G)). Indeed, inside H the sum of d1(v) over all vertices v of H is equal to 
the number of edges of H, and is at most k times the number of vertices.

Caro and Hansberg showed that this condition is sufficient.

Theorem B. (See Caro and Hansberg [1].) Let G be an r-uniform hypergraph and k ≥ 0
an integer. Then G has an orientation such that d1(v) ≤ k for all vertices v if and only 
if all subgraphs H ⊂ G satisfy |E(H)| ≤ k|V (H)|.

They proved it by constructing a suitable maximal flow on H, and a simple proof via 
Hall’s marriage theorem is also possible.

Now, in contrast to the situation for graphs, for oriented hypergraphs there is a sensible 
notion of degree for sets of multiple vertices. For example, given an orientation D(G)
and a pair of vertices u, v, we can define d12(u, v) to be the number of edges e such that 
u and v (in some order) are in the first two positions of D(e). So if the oriented edges 
are (4, 5, 1), (4, 1, 3), (1, 4, 2) (where the vertex set is [5]) then d12(1, 4) = 2.

More generally, for a p-set of vertices A = {v1, . . . , vp} ⊂ V and a p-set I ⊂ [r], the 
I-degree of A, denoted by dI(A), is the number of edges e such that the elements of 
D(e) in positions labeled by I are v1, . . . , vp (in some order). More formally, dI(A) is the 
number of edges e such that if we write D(e) = (x1, . . . , xr) then {xi : i ∈ I} is exactly 
the set A.

We mention in passing that there is a variant of this notion where the mutual order of 
u and v is important. However, this alternative definition turns out to be less interesting 
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