

Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series A

www.elsevier.com/locate/jcta

Degrees in oriented hypergraphs and sparse Ramsey theory

Vytautas Gruslys

Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WB, United Kingdom

ARTICLE INFO

Article history: Received 27 November 2013 Available online 14 August 2014

Keywords: Oriented hypergraph Set mapping Amalgamation

АВЅТ КАСТ

Let G be an r-uniform hypergraph. When is it possible to orient the edges of G in such a way that every p-set of vertices has some p-degree equal to 0? (The p-degrees generalise for sets of vertices what in-degree and out-degree are for single vertices in directed graphs.) Caro and Hansberg asked if the obvious Hall-type necessary condition is also sufficient. Our main aim is to show that this is true for r large (for

Our main aim is to show that this is true for r large (for given p), but false in general. Our counterexample is based on a new technique in sparse Ramsey theory that may be of independent interest.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

When does a graph G have an orientation such that every out-degree is at most k? An obvious necessary condition is that $|E(H)| \leq k|V(H)|$ for every subgraph $H \subset G$. Indeed, suppose G has such an orientation and $H \subset G$. Inside H the sum of out-degrees equals the number of edges. Moreover, each vertex contributes at most k to this sum, hence the condition. Hakimi proved that this condition is in fact sufficient.

 $\label{eq:http://dx.doi.org/10.1016/j.jcta.2014.08.001} 0097\text{-}3165 \ensuremath{\oslash}\ 2014 \ \text{Elsevier Inc. All rights reserved}.$

E-mail address: v.gruslys@dpmms.cam.ac.uk.

Theorem A. (See Hakimi [3].) Let G be a graph and $k \ge 0$ an integer. Then G has an orientation such that every vertex has out-degree at most k if and only if all subgraphs $H \subset G$ satisfy $|E(H)| \le k|V(H)|$.

In fact, Hakimi proved a slightly stronger result that determines all possible out-degree sequences produced by orientations of a given graph G. His proof uses induction on the number of edges, but the weaker statement given above is a straightforward consequence of Hall's marriage theorem.

What about hypergraphs? Suppose an r-uniform hypergraph G (i.e. a family of r-sets) is given an *orientation*, by which we mean that for each edge e one ordering of the vertices of e is chosen. This ordering is called the *orientation of* e. Note that each edge has exactly r! possible orientations. If r = 2 then this coincides with the usual definition of graph orientation. We will often denote an orientation of G by D(G) and the corresponding orientation of an edge e by D(e).

Given an orientation D(G), a vertex v and $i \in [r] = \{1, 2, ..., r\}$, the *i*-degree of v, written $d_i(v)$, is the number of edges e such that v is in the *i*-th position of D(e). Note that if r = 2 then $d_1(v)$ is the out-degree and $d_2(v)$ is the in-degree of v.

When does an r-uniform hypergraph G have an orientation such that $d_1(v) \leq k$ for every vertex v? Again, an obvious necessary condition is that $|E(H)| \leq k|V(H)|$ for every subgraph $H \subset G$ (where as usual H is a subgraph of G if $V(H) \subset V(G)$ and $E(H) \subset E(G)$). Indeed, inside H the sum of $d_1(v)$ over all vertices v of H is equal to the number of edges of H, and is at most k times the number of vertices.

Caro and Hansberg showed that this condition is sufficient.

Theorem B. (See Caro and Hansberg [1].) Let G be an r-uniform hypergraph and $k \ge 0$ an integer. Then G has an orientation such that $d_1(v) \le k$ for all vertices v if and only if all subgraphs $H \subset G$ satisfy $|E(H)| \le k|V(H)|$.

They proved it by constructing a suitable maximal flow on H, and a simple proof via Hall's marriage theorem is also possible.

Now, in contrast to the situation for graphs, for oriented hypergraphs there is a sensible notion of degree for sets of *multiple* vertices. For example, given an orientation D(G)and a pair of vertices u, v, we can define $d_{12}(u, v)$ to be the number of edges e such that u and v (in some order) are in the first two positions of D(e). So if the oriented edges are (4, 5, 1), (4, 1, 3), (1, 4, 2) (where the vertex set is [5]) then $d_{12}(1, 4) = 2$.

More generally, for a *p*-set of vertices $A = \{v_1, \ldots, v_p\} \subset V$ and a *p*-set $I \subset [r]$, the *I*-degree of A, denoted by $d_I(A)$, is the number of edges e such that the elements of D(e) in positions labeled by I are v_1, \ldots, v_p (in some order). More formally, $d_I(A)$ is the number of edges e such that if we write $D(e) = (x_1, \ldots, x_r)$ then $\{x_i : i \in I\}$ is exactly the set A.

We mention in passing that there is a variant of this notion where the mutual order of u and v is important. However, this alternative definition turns out to be less interesting

Download English Version:

https://daneshyari.com/en/article/4655263

Download Persian Version:

https://daneshyari.com/article/4655263

Daneshyari.com