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We determine a Dirac-type vertex degree threshold for perfect

K :
H;gzurogrrdai)h matchings in 3-partite 3-uniform hypergraphs.
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1. Introduction

A perfect matching in a graph G is a set of vertex-disjoint edges, which covers all
vertices of G. Tutte [21] gave a characterisation of all graphs that contain a perfect
matching. An easy consequence of a celebrated theorem of Dirac [8] is that if G is
a graph of even order n and minimum degree §(G) > n/2, then G contains a perfect
matching. Thus, it is natural to ask for Dirac-type degree thresholds for perfect matchings
in hypergraphs.
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We follow the notation of [4] and denote by (g) the set of all k-element subsets of a
set U. We will often write a k-set to mean a k-element set. A k-uniform hypergraph, or
k-graph for short, is a pair H = (V(H), E(H)), where V(H) is a finite set of vertices
and the edge set E(H) is a set of k-subsets of V(H). Often we write V instead of V(H)
when it is clear from the context. A matching M in H is a set of vertex-disjoint edges
of H, and it is perfect if M covers all vertices of H. Clearly, a perfect matching only
exists if |V is divisible by k.

Given a k-graph H and an [-set T € (‘l/), let deg(T') be the number of (k — I)-sets
S € (,V,) such that SUT is an edge in H. Let 6;(H) be the minimum I-degree of H, that
is, min deg(7T") over all T € (‘l/) We define m;(k, n) to be the smallest integer m such that
every k-graph H of order n satisfying 6;(H) > m contains a perfect matching. Hence, we
always assume that k|n whenever we talk about my;(k,n). Thus we have m1(2,n) = n/2,
by the result of Dirac.

For k > 3 and [ = k — 1, Rodl, Ruciniski and Szemerédi [18] determined the value of
mi—1(k,n) exactly, which improved the bound given in [13]. For k > 3 and 1 <1 < k, it
is conjectured in [10] that

ml(k;,n)wmax{%,l— (1—%>k_l}(k’il>. (1)

For k = 3 and [ = 1, Han, Person and Schacht [10] showed that (1) is true, that is,
mi(3,n) ~ 3(%) improving on a result of Daykin and Héggkvist [7] for k = 3. The exact
value was independently determined by Khan [11] and Kiihn, Osthus and Treglown [14].
Khan [12] further determined mq (4, n) exactly. For k > 3 and k/2 < < k, Pikhurko [10]
proved that my(k,n) ~ 1(,",). Recently, exact values of my(k,n) for all k/2 <1 < k
were determined by Czygrinow and Kamat [6] and by Treglown and Zhao [19,20]. Alon,
Frankl, Huang, R6dl, Rucinski and Sudakov [2] determined the asymptotic value of
my(k,n) when k — 1 < 4. Thus, for 1 <1 < k/2, (1) is still open except for a few cases.
Partial results were proved by Han, Person and Schacht [10] and later improved by the
second author and Rucinski [15]. We recommend [17] for a survey of other results on
perfect matchings in hypergraphs.

Instead of seeking a perfect matching, Bollobas, Daykin and Erdds [5] considered
Dirac-type degree thresholds for a matching of size m.

Theorem 1.1. (See Bollobds, Daykin and Erdds [5].) Let k and m be integers with k > 2.
If H is a k-graph of order n > 2k®*(m + 2) and

wn> (270 = (60

then H contains a matching of size m.
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