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It is a fundamental property of non-letter Lyndon words that they
can be expressed as a concatenation of two shorter Lyndon words.
This leads to a naive lower bound �log2(n)� + 1 for the number
of distinct Lyndon factors that a Lyndon word of length n must
have, but this bound is not optimal. In this paper we show that
a much more accurate lower bound is �logφ(n)� + 1, where φ

denotes the golden ratio (1 + √
5 )/2. We show that this bound

is optimal in that it is attained by the Fibonacci Lyndon words. We
then introduce a mapping Lx that counts the number of Lyndon
factors of length at most n in an infinite word x. We show that
a recurrent infinite word x is aperiodic if and only if Lx � Lf,
where f is the Fibonacci infinite word, with equality if and only
if x is in the shift orbit closure of f.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Lyndon words are primitive words that are the lexicographically smallest words in their conjugacy
classes [19]. Originally defined in the context of free Lie algebras [6], Lyndon words have shown to
be a useful tool for a variety of problems in combinatorics ranging from the construction of de Bruijn
sequences [16] to proving the optimal lower bound for the size of uniform unavoidable sets [5].
One of the fundamental properties of Lyndon words is their recursive nature: if w is a non-letter
Lyndon word, then there exist two shorter Lyndon words u and v such that w = uv [6]. This implies
that the number of different Lyndon factors of w is bounded below by �log2 |w|� + 1, but a little
experimentation shows that this is hardly optimal. One of the results of this paper, Corollary 1, is
that a much better lower bound is �logφ |w|�+ 1, where φ denotes the golden ratio (1 +√

5 )/2. Here
the base of the logarithm is optimal, because the Fibonacci Lyndon words attain the lower bound.
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This follows from Theorem 1, in which we show that if w is a Lyndon word with |w| � Fn , where
Fn is the nth Fibonacci number, then the number of distinct Lyndon factors in w is at least n with
equality if and only if w equals one of the two Fibonacci Lyndon words of length Fn , up to renaming
letters.

It also makes sense to count the number of Lyndon factors of infinite words, but here we have to
use caution: if an infinite word is aperiodic, it will have infinitely many Lyndon factors, as we will
show in Corollary 2. Thus we define a mapping Lx :N →N for which Lx(n) is the number of distinct
Lyndon words of length at most n occurring in a given infinite word x. Of special importance is the
Fibonacci infinite word f. Our first main result in this setting, Theorem 3, is that if x is aperiodic, then
Lx � Lf . As Lyndon words are unbordered, this is an improvement of a classic result by Ehrenfeucht
and Silberger [13] stating only that an aperiodic infinite word must have arbitrarily long unbordered
factors. If we confine our realm to recurrent infinite words, then the above result can be improved as
follows. In Theorem 4 we show that a recurrent infinite word x is aperiodic if and only if Lx � Lf
with equality if and only if x is in the shift orbit closure of the Fibonacci word f, up to renaming
letters.

Fibonacci words are sort of a universal optimality prover in that they possess a wide range of
extremal properties, see e.g. [3,7,11,21,17,15]. The problem of the enumeration of Lyndon factors in
automatic and linearly recurrent sequences has recently been studied in [9].

2. Preliminaries

In this section we establish the notation of this paper and present some preliminary results. We
assume the reader is familiar with the usual terminology of words and languages as given in [1]
or [20].

Let A be a finite, nonsingular alphabet totally ordered by <; thus every pair of distinct letters
a,b ∈A satisfy either a< b or b< a, but not both. We use the same symbol ‘<’ to denote the usual
order relation among the integers, but this should not cause problems as the context always tells
which order is meant. In what follows, we sometimes assume that 0,1 ∈A, sometimes a,b ∈A, and
then their mutual order is implicitly assumed to be their “natural order,” so that 0< 1 and a< b.

The set of all finite words over A is denoted by A∗ and the set of finite words excluding the
empty word ε is denoted by A+ .

Let w = a1a2 . . .an be a nonempty finite word with ai ∈ A and n � 1. The length of w is |w| = n;
we denote the cardinality of a set X by #X . The reversal of w is the word w R = anan−1 . . .a1. If
w R = w , then w is a palindrome. The word w has period p � 1 if ai+p = ai for all i = 1,2, . . . ,n − p.
According to this definition, any integer p � n is a period of w . If p � n, then p is a period of w if
and only if there exist words x, y, z ∈A∗ such that w = xy = zx and |y| = |z| = p. If w has no periods
smaller than |w|, then it is called unbordered, otherwise w is bordered. Suppose that w = pf s with
p, f , s ∈ A∗ . Then p, f and s, any of which may be empty, are respectively called a prefix, factor, and
suffix of w . In addition, p and s are proper prefix and suffix if they do not equal w . We say that a word
z ∈ A+ is a periodic extension of w if z is a prefix of a word in w+ . We abuse the word “extension”
here in that we allow an “extension” to be a prefix of w . The word we get from w by deleting its
last letter is denoted by w�; thus w� = a1a2 . . .an−1. Also if w = xy for some words x, y, we denote
x−1 w = y and wy−1 = x. The word w is primitive if it cannot be written in the form w = uk for a
word u ∈A+ and an integer k � 2. If w = uv , then the word vu is called a conjugate of w . The set of
all conjugates of w is called the conjugacy class of w .

Lemma 1. (See Castelli, Mignosi, and Restivo [4].) Let w ∈A+ be a word with periods p, q.

(i) If q < p � |w|, then the prefix and suffix of w of length |w| − q have periods q and p − q.
(ii) Let u and v be the prefix and suffix of w of length q, respectively. Then uw and w v have periods q and

p + q.

In property (ii) in the previous lemma, the indicated source [4] only mentions and proves the
claim for the periods of uw , but the case for the periods of w v can be proved similarly.
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