

Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series A

www.elsevier.com/locate/jcta

Forbidding just one intersection, for permutations $\stackrel{\text{\tiny{trans}}}{\to}$

School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London, E1 4NS, United Kingdom

ARTICLE INFO

Article history: Received 30 October 2013 Available online 16 May 2014

Keywords: Permutations Intersections Stability

ABSTRACT

We prove that for n sufficiently large, if \mathcal{A} is a family of permutations of $\{1, 2, \ldots, n\}$ with no two permutations in \mathcal{A} agreeing exactly once, then $|\mathcal{A}| \leq (n-2)!$, with equality holding only if \mathcal{A} is a coset of the stabilizer of 2 points. We also obtain a Hilton–Milner type result, namely that if \mathcal{A} is such a family which is not contained within a coset of the stabilizer of 2 points, then it is no larger than the family

$$\begin{split} \mathcal{B} &= \{ \sigma \in S_n : \ \sigma(1) = 1, \ \sigma(2) = 2, \\ &\# \{ \text{fixed points of } \sigma \geq 5 \} \neq 1 \} \\ &\cup \{ (1 \ 3)(2 \ 4), (1 \ 4)(2 \ 3), (1 \ 3 \ 2 \ 4), (1 \ 4 \ 2 \ 3) \} \end{split}$$

We conjecture that for $t \in \mathbb{N}$, and for *n* sufficiently large depending on *t*, if \mathcal{A} is family of permutations of $\{1, 2, \ldots, n\}$ with no two permutations in \mathcal{A} agreeing exactly t - 1 times, then $|\mathcal{A}| \leq (n - t)!$, with equality holding only if \mathcal{A} is a coset of the stabilizer of *t* points. This can be seen as a permutation analogue of a conjecture of Erdős on families of *k*-element sets with a forbidden intersection, proved by Frankl and Füredi in [9].

© 2014 Elsevier Inc. All rights reserved.

CrossMark

 $\label{eq:http://dx.doi.org/10.1016/j.jcta.2014.04.011} 0097-3165 @ 2014 Elsevier Inc. All rights reserved.$

^{*} Research supported in part by a Feinberg Visiting Fellowship from the Weizmann Institute of Science. E-mail address: D.Ellis@qmul.ac.uk.

1. Introduction

Let X be an n-element set, and let $X^{(k)}$ denote the collection of all k-element subsets of X. We say a family $\mathcal{A} \subset X^{(k)}$ is *t-intersecting* if any two sets in \mathcal{A} share at least t elements, i.e. $|x \cap y| \geq t$ for any $x, y \in \mathcal{A}$. Erdős, Ko and Rado [8] proved in 1961 that if n is sufficiently large depending on k and t, and $\mathcal{A} \subset X^{(k)}$ is t-intersecting, then $|\mathcal{A}| \leq {n-t \choose k-t}$, with equality holding only if \mathcal{A} is the family of all k-sets containing some fixed t-element subset of X.

In [7], Erdős asked what happens if we weaken the condition, and just forbid an intersection of size *exactly* t - 1. Frankl and Füredi [9] proved that for $k \ge 2t$ and for n sufficiently large depending on k, if $\mathcal{A} \subset X^{(k)}$ such that no two sets in \mathcal{A} have intersection of size exactly t - 1, then $|\mathcal{A}| \le {\binom{n-t}{k-t}}$, with equality holding only if \mathcal{A} is the family of all k-sets containing some fixed t-element subset of X.

In this paper, we consider analogues of these problems for the symmetric group S_n , the group of all permutations of $\{1, 2, ..., n\} =: [n]$. We say that a family of permutations $\mathcal{A} \subset S_n$ is *t*-intersecting if any two permutations in \mathcal{A} agree on at least t points — in other words, for all $\sigma, \tau \in \mathcal{A}$, we have $\#\{i : \sigma(i) = \tau(i)\} \ge t$.

Deza and Frankl [2] proved in 1977 that if $\mathcal{A} \subset S_n$ is 1-intersecting, then $|\mathcal{A}| \leq (n-1)!$. The case of equality turned out to be somewhat harder than one might expect; this was resolved in 2003 by Cameron and Ku [1], and independently by Larose and Malvenuto [12], who proved that if $\mathcal{A} \subset S_n$ is an intersecting family of size (n-1)!, then \mathcal{A} is a coset of the stabiliser of a point.

Deza and Frankl conjectured in [2] that for any $t \in \mathbb{N}$, if n is sufficiently large depending on t, and $\mathcal{A} \subset S_n$ is t-intersecting, then $|\mathcal{A}| \leq (n-t)!$. This was proved in 2008, by the author and independently by Friedgut and Pilpel, using very similar techniques (specifically, eigenvalue methods, combined with the representation theory of S_n); we have written a joint paper, [6]. We also proved that equality holds only if \mathcal{A} is a t-coset of S_n (meaning a coset of the stabiliser of t points), again provided n is sufficiently large depending on t.

Cameron and Ku [1] conjectured that if $\mathcal{A} \subset S_n$ is 1-intersecting, and \mathcal{A} is not contained in any 1-coset, then \mathcal{A} is no larger than the family

$$\{\sigma \in S_n : \sigma(1) = 1, \sigma(j) = j \text{ for some } j > 2\} \cup \{(1 \ 2)\},\$$

which has size (1 - 1/e + o(1))(n - 1)!. This was proved by the author in [5], using the representation theory of S_n combined with some combinatorial arguments. It can be seen as an analogue of the Hilton–Milner Theorem [10] on 1-intersecting families of r-subsets of $\{1, 2, \ldots, n\}$. In [4], the author proved a generalization of the Cameron–Ku conjecture for t-intersecting families, namely that if $\mathcal{A} \subset S_n$ is a t-intersecting family which is not contained within a coset of the stabilizer of t points, then \mathcal{A} is no larger than the family

$$\{\sigma: \ \sigma(i) = i \ \forall i \le t, \ \sigma(j) = j \text{ for some } j > t+1\} \cup \{(1\ t+1), \dots, (t\ t+1)\}$$

Download English Version:

https://daneshyari.com/en/article/4655337

Download Persian Version:

https://daneshyari.com/article/4655337

Daneshyari.com