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Denote by gdist(p) the least non-zero number of cells that have
to be changed to get a latin square from the table of addition
modulo p. A conjecture of Drápal, Cavenagh and Wanless states
that there exists c > 0 such that gdist(p) � c log(p). In this paper
the conjecture is proved for c ≈ 7.21, and as an intermediate result
it is shown that an equilateral triangle of side n can be non-
trivially dissected into at most 5 log2(n) integer-sided equilateral
triangles. The paper also presents some evidence which suggests
that gdist(p)/ log(p) ≈ 3.56 for large values of p.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we solve a long-standing conjecture about distances of group tables and latin squares.
Consider a table of addition modulo prime p; it is a latin square with dimensions p × p. The question
is, what is the smallest number gdist(p) of cells we have to change in order to get another latin
square?

It has been conjectured [5,2,3] that the answer is Θ(log(p)), which means there are positive con-
stants c1, c2 such that

c1 log(p) � gdist(p) � c2 log(p)

for sufficiently large primes p. The lower bound was established before by Drápal and Kepka [6] with
the constant c1 = e. An alternative proof of the same estimate was later found by Cavenagh [2], and
another proof (with a slightly smaller constant) appears in the paper [4] by Cavenagh and Wanless.

The previously known best upper estimate is due to Drápal [5] and states that gdist(p) � c log2(p)

for some c > 0. The method he used relies upon dissections of equilateral triangles into equilateral
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triangles with the special property that no six triangles meet at one point. In this paper we find
a construction of such dissections which leads to the logarithmic estimate. To do so we examine
dissections of rectangles into squares with the analogous property that no four of them meet at one
point.

To be more specific, in Section 2 we show how to dissect a rectangle of size n × (n + 3) into
5 log4(n) + 3

2 squares and how to adapt the construction to get a dissection of an equilateral triangle
of side n into 5 log2(n) triangles. In Section 3 we formulate the conjecture in general for an arbitrary
group G and explain the connection to the addition modulo p. The section is concluded by a proof of
the conjecture.

Now that we know the asymptotic behavior of gdist(p) it is natural to ask about the constants in
the estimates. The known lower bound with our result for the upper bound give

2.72 ≈ e <
gdist(p)

log(p)
< 5 log2(e) ≈ 7.21

for all primes p. However, there is a conjecture that the limit limp→∞ gdist(p)/ log(p) exists and is
equal to 1/ log(P ) ≈ 3.56, where P is such that P 3 = P + 1. In Section 4 we present a construction
and computational evidence that support such a claim.

2. Dissections of equilateral triangles

In this section we establish a logarithmic upper bound for the number of equilateral trian-
gles needed to dissect an equilateral triangle of side n. Such dissections were originally studied by
Tutte [11].

Definition. A dissection of order k of a rectangle is a set of k squares of integral side which cover the
rectangle and overlap at most on their boundaries. A dissection is ⊕-free if no four of them share a
common point. Let us denote by rd(n) the minimal order of a ⊕-free dissection of a rectangle of size
n × (n + d).

Similarly we define a dissection of order k of an equilateral triangle as a set of k equilateral triangles
of integral side which cover the triangle and overlap at most on their boundaries. We say that such
a dissection is �-free if no six triangles share a common point, and non-trivial if k > 1. Let us denote
by t(n) the minimal order of a non-trivial �-free dissection of an equilateral triangle of side n.

To shorten notation, from now on we write only triangle instead of equilateral triangle unless
otherwise specified.

The study of dissections of rectangles into squares have been initiated by a joint paper by Brooks,
Smith, Stone, and Tutte [1]. In 1965 Trustrum [10] proved that it is possible to find a dissection of
an n × n square into at most 6 log2(n) squares, where n � 2. He did so by examining dissections of
rectangles n × (n + d) with d ∈ {1,2,4}. For our purposes we need ⊕-free dissections. While it is
possible to modify Trustrum’s dissections to be such, it turns out to be more efficient to use the case
with d = 3.

Let us describe an algorithm that dissects a rectangle of size n × (n + 3) for n � 2. Fix the orien-
tation of the rectangle with the shorter side on the left. For convenience, we say that a dissection is
padded if it has a square of side at least 2 in the upper left corner. Then the algorithm is as follows:

(A1) For n = 2,3,4,5,6,7,8,9,10 dissect into 4,2,5,5,3,6,6,4,7 squares respectively such that the
dissection is ⊕-free and padded. These dissections are completely straightforward as the reader
will easily be able to verify.

(A2) For n of the form 4k + z with k � 2, z ∈ {3,4,5,6}, depending on z dissect into 3 or 5 squares
and a rectangle of size 2k × 2(k + 3). Then dissect this rectangle with two times larger tiles
recursively. Fig. 1 illustrates the method.
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