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Frieze patterns (in the sense of Conway and Coxeter) are in close
connection to triangulations of polygons. Broline, Crowe and Isaacs
have assigned a symmetric matrix to each polygon triangula-
tion and computed the determinant. In this paper we consider
d-angulations of polygons and generalize the combinatorial al-
gorithm for computing the entries in the associated symmetric
matrices; we compute their determinants and the Smith normal
forms. It turns out that both are independent of the particular
d-angulation, the determinant is a power of d − 1, and the ele-
mentary divisors only take values d − 1 and 1. We also show that
in the generalized frieze patterns obtained in our setting every ad-
jacent 2 × 2-determinant is 0 or 1, and we give a combinatorial
criterion for when they are 1, which in the case d = 3 gives back
the Conway–Coxeter condition on frieze patterns.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Frieze patterns have been introduced and studied by Conway and Coxeter [7,8]. A frieze pattern (of
size n) is an array of n bi-infinite rows of positive integers (arranged as in the example below) such
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that the top and bottom rows consist only of 1’s and, most importantly, every set of four adjacent
numbers forming a diamond

b
a d

c

satisfies the determinant condition ad − bc = 1. An example of such a frieze pattern is given by

. . . 1 1 1 1 1 1 1 1 1 1 1 . . .

. . . 1 3 1 2 2 1 3 1 2 2 . . .

. . . 1 2 2 1 3 1 2 2 1 3 1 . . .

. . . 1 1 1 1 1 1 1 1 1 1 . . .

A crucial feature of frieze patterns is that they are invariant under a glide reflection. In the above
example, a fundamental domain for the frieze pattern is given by the grey region (green in the web
version); the entire pattern is obtained by iteratively performing a glide reflection to this region.

Frieze patterns can be constructed geometrically via triangulations of polygons. For n ∈ N, let Pn

be a convex n-gon, and consider any triangulation T of Pn (necessarily into n − 2 triangles). We label
the vertices of Pn by 1, . . . ,n in counterclockwise order; in the sequel Pn is always meant to be the
convex n-gon together with a fixed labelling.

For each vertex i ∈ {1, . . . ,n} let ai be the number of triangles of T incident to the vertex i. Then
the sequence a1, . . . ,an , repeated infinitely often, gives the second row in a frieze pattern (of size
n − 1).

As an example, consider the case n = 5 and the following triangulation of the pentagon

We get for the number of triangles at the vertices the sequence a1 = 1, a2 = 3, a3 = 1, a4 = 2 and
a5 = 2, whose repetition gives exactly the second row in the above example of a frieze pattern.

A crucial result of Conway and Coxeter is that every frieze pattern arises in this way from a
triangulation.

As a more complicated example, consider the following triangulation of the octagon
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