

Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series A

www.elsevier.com/locate/jcta

Generalized frieze pattern determinants and higher angulations of polygons

Christine Bessenrodt^a, Thorsten Holm^{a,*}, Peter Jørgensen^b

 ^a Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Fakultät für Mathematik und Physik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
^b School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom

ARTICLE INFO

Article history: Received 16 May 2013 Available online 25 November 2013

Keywords: Determinant Elementary divisor Frieze pattern Polygon Smith normal form Symmetric matrix

ABSTRACT

Frieze patterns (in the sense of Conway and Coxeter) are in close connection to triangulations of polygons. Broline, Crowe and Isaacs have assigned a symmetric matrix to each polygon triangulation and computed the determinant. In this paper we consider *d*-angulations of polygons and generalize the combinatorial algorithm for computing the entries in the associated symmetric matrices; we compute their determinants and the Smith normal forms. It turns out that both are independent of the particular *d*-angulation, the determinant is a power of *d* – 1, and the elementary divisors only take values *d* – 1 and 1. We also show that in the generalized frieze patterns obtained in our setting every adjacent 2 × 2-determinant is 0 or 1, and we give a combinatorial criterion for when they are 1, which in the case *d* = 3 gives back the Conway–Coxeter condition on frieze patterns.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Frieze patterns have been introduced and studied by Conway and Coxeter [7,8]. A frieze pattern (of size n) is an array of n bi-infinite rows of positive integers (arranged as in the example below) such

* Fax: +49 511 762 5490.

0097-3165/\$ - see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jcta.2013.11.003

E-mail addresses: bessen@math.uni-hannover.de (C. Bessenrodt), holm@math.uni-hannover.de (T. Holm), peter.jorgensen@ncl.ac.uk (P. Jørgensen).

URLs: http://www.iazd.uni-hannover.de/~bessen (C. Bessenrodt), http://www.iazd.uni-hannover.de/~tholm (T. Holm), http://www.staff.ncl.ac.uk/peter.jorgensen (P. Jørgensen).

that the top and bottom rows consist only of 1's and, most importantly, every set of four adjacent numbers forming a diamond

satisfies the determinant condition ad - bc = 1. An example of such a frieze pattern is given by

... 1 1 1 1 1 1 1 1 ... 3 ... 1 2 2 1 3 1 2 2 1 3 1 1 1 1 1 1 1 1 ... 1

A crucial feature of frieze patterns is that they are invariant under a glide reflection. In the above example, a fundamental domain for the frieze pattern is given by the grey region (green in the web version); the entire pattern is obtained by iteratively performing a glide reflection to this region.

Frieze patterns can be constructed geometrically via triangulations of polygons. For $n \in \mathbb{N}$, let \mathcal{P}_n be a convex *n*-gon, and consider any triangulation \mathcal{T} of \mathcal{P}_n (necessarily into n - 2 triangles). We label the vertices of \mathcal{P}_n by $1, \ldots, n$ in counterclockwise order; in the sequel \mathcal{P}_n is always meant to be the convex *n*-gon together with a fixed labelling.

For each vertex $i \in \{1, ..., n\}$ let a_i be the number of triangles of \mathcal{T} incident to the vertex i. Then the sequence $a_1, ..., a_n$, repeated infinitely often, gives the second row in a frieze pattern (of size n-1).

As an example, consider the case n = 5 and the following triangulation of the pentagon

We get for the number of triangles at the vertices the sequence $a_1 = 1$, $a_2 = 3$, $a_3 = 1$, $a_4 = 2$ and $a_5 = 2$, whose repetition gives exactly the second row in the above example of a frieze pattern.

A crucial result of Conway and Coxeter is that every frieze pattern arises in this way from a triangulation.

As a more complicated example, consider the following triangulation of the octagon

Download English Version:

https://daneshyari.com/en/article/4655350

Download Persian Version:

https://daneshyari.com/article/4655350

Daneshyari.com