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In 1857, Cayley showed that certain sequences, now called Cayley
compositions, are equinumerous with certain partitions into powers
of 2. In this paper we give a simple bijective proof of this result
and a geometric generalization to equality of Ehrhart polynomials
between two convex polytopes. We then apply our results to give a
new proof of Braun’s conjecture proved recently by the authors [15].
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0. Introduction and main results

Partition theory is a classical field with a number of advanced modern results and applications. Its
long and tumultuous history left behind a number of beautiful results which are occasionally brought
to light to wide acclaim. The story of the so called Cayley compositions is a prime example of this.
Introduced and studied by Cayley in 1857 [7], they were rediscovered by Minc [17], and remained
largely forgotten until Andrews, Paule, Riese and Strehl [2] resurrected and christened them in 2001.
This is when things became really interesting.

Theorem 1. (See Cayley [7].) The number of integer sequences (a1, . . . ,an) such that 1 � a1 � 2, and 1 �
ai+1 � 2ai for 1 � i < n, is equal to the total number of partitions of integers N ∈ {0,1, . . . ,2n − 1} into parts
1,2,4, . . . ,2n−1 .

Our first result is a long elusive bijective proof of Cayley’s theorem, and its several extensions. Our
bijection construction is geometric, based on our approach in [18].
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Denote by An the set of sequences (a1, . . . ,an) satisfying the conditions of the theorem, which
are called Cayley compositions. Denote by Bn the set of partitions into powers of 2 as in the theorem,
which we call Cayley partitions. Now Theorem 1 states that |An| = |Bn|. For example,

A2 = {
(1,1), (1,2), (2,1), (2,2), (2,3), (2,4)

}
, B2 = {

21,2,13,12,1,∅
}
,

so |A2| = |B2| = 6. Following [4], define the Cayley polytope An to be the convex hull of all Cayley
compositions (a1, . . . ,an) ∈ R

n .
The main result of this paper is the following geometric extension of Theorem 1. Recall that the

Ehrhart polynomial EP (t) of a lattice polytope P ⊂ R
n is defined by

EP (k) = #
{
kP ∩Z

n},
where kP denotes the k-fold dilation of P , k ∈N (see e.g. [3]).

Theorem 2. Let Bn be the set of Cayley partitions, where a partition of the form (2n−1)m1 (2n−2)m2 . . . 1mn is
identified with an integer point (m1,m2, . . . ,mn) ∈ R

n. Now let Bn = convBn. Then EAn (t) = EBn (t).

In particular, when t = 1, we obtain Cayley’s theorem. Our proof is based on an explicit volume-
preserving map ϕ : Bn → An , which satisfies a number of interesting properties. In particular, when
restricted to integer points, this map gives the bijection ϕ : Bn → An mentioned above (see Proposi-
tion 6).

In [4], Ben Braun made an interesting conjecture about the volume of An , which was recently
proved by the authors [15]. Denote by Cn the set of connected graphs on n nodes, and let Cn = |Cn|.

Theorem 3 (Formerly Braun’s conjecture). (See [15].) Let An ⊂ R
n be the set of Cayley compositions, and let

An = convAn be the Cayley polytope. Then volAn = Cn+1/n!.

Combined with Theorem 2, we immediately have volBn = volAn , and conclude:

Corollary 4. Let Bn be the polytope defined above. Then volBn = Cn+1/n!.

Curiously, one can also use volBn = volAn in reverse, and derive Theorem 3 from Theorem 2 and
known results on Stanley–Pitman polytopes (see below).

The rest of this paper is structured as follows. In Section 1 we prove Theorems 1 and 2 using an
explicit bijection ϕ . Some applications are given in Section 2, followed by a new proof of Theorem 3
in Section 3. We finish with final remarks in Section 4.

1. Bijection construction

Recall from [4,15] (or observe directly from the definition) that Cayley polytope An ⊂ R
n is defined

by the following inequalities:

1 � x1 � 2, 1 � x2 � 2x1, . . . , 1 � xn � 2xn−1.

Consider a basis

e1 = (
1,2,4, . . . ,2n−1), e2 = (

0,1,2, . . . ,2n−2), . . . , en = (0,0, . . . ,1),

and a map ϕ : Rn →R
n defined as follows:

ϕ(b1,b2, . . . ,bn) = (
2,4, . . . ,2n) −

n∑
i=1

biei .
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