Cayley compositions, partitions, polytopes, and geometric bijections

Matjaž Konvalinka ${ }^{\text {a }}$, Igor Pak ${ }^{\text {b,1 }}$
${ }^{\text {a }}$ Department of Mathematics, University of Ljubljana, Ljubljana, Slovenia
${ }^{\text {b }}$ Department of Mathematics, UCLA, Los Angeles, CA 90095, USA

ARTICLE INFO

Article history:

Received 14 June 2013
Available online 7 December 2013

Keywords:

Cayley composition
Integer partition
Convex polytope
Ehrhart polynomial Bijective proof

Abstract

In 1857, Cayley showed that certain sequences, now called Cayley compositions, are equinumerous with certain partitions into powers of 2 . In this paper we give a simple bijective proof of this result and a geometric generalization to equality of Ehrhart polynomials between two convex polytopes. We then apply our results to give a new proof of Braun's conjecture proved recently by the authors [15].

© 2013 Elsevier Inc. All rights reserved.

0. Introduction and main results

Partition theory is a classical field with a number of advanced modern results and applications. Its long and tumultuous history left behind a number of beautiful results which are occasionally brought to light to wide acclaim. The story of the so called Cayley compositions is a prime example of this. Introduced and studied by Cayley in 1857 [7], they were rediscovered by Minc [17], and remained largely forgotten until Andrews, Paule, Riese and Strehl [2] resurrected and christened them in 2001. This is when things became really interesting.

Theorem 1. (See Cayley [7].) The number of integer sequences $\left(a_{1}, \ldots, a_{n}\right)$ such that $1 \leqslant a_{1} \leqslant 2$, and $1 \leqslant$ $a_{i+1} \leqslant 2 a_{i}$ for $1 \leqslant i<n$, is equal to the total number of partitions of integers $N \in\left\{0,1, \ldots, 2^{n}-1\right\}$ into parts $1,2,4, \ldots, 2^{n-1}$.

Our first result is a long elusive bijective proof of Cayley's theorem, and its several extensions. Our bijection construction is geometric, based on our approach in [18].

[^0]Denote by \mathcal{A}_{n} the set of sequences $\left(a_{1}, \ldots, a_{n}\right)$ satisfying the conditions of the theorem, which are called Cayley compositions. Denote by \mathcal{B}_{n} the set of partitions into powers of 2 as in the theorem, which we call Cayley partitions. Now Theorem 1 states that $\left|\mathcal{A}_{n}\right|=\left|\mathcal{B}_{n}\right|$. For example,

$$
\mathcal{A}_{2}=\{(1,1),(1,2),(2,1),(2,2),(2,3),(2,4)\}, \quad \mathcal{B}_{2}=\left\{21,2,1^{3}, 1^{2}, 1, \varnothing\right\},
$$

so $\left|\mathcal{A}_{2}\right|=\left|\mathcal{B}_{2}\right|=6$. Following [4], define the Cayley polytope \boldsymbol{A}_{n} to be the convex hull of all Cayley compositions $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$.

The main result of this paper is the following geometric extension of Theorem 1. Recall that the Ehrhart polynomial $\mathcal{E}_{P}(t)$ of a lattice polytope $P \subset \mathbb{R}^{n}$ is defined by

$$
\mathcal{E}_{P}(k)=\#\left\{k P \cap \mathbb{Z}^{n}\right\},
$$

where $k P$ denotes the k-fold dilation of $P, k \in \mathbb{N}$ (see e.g. [3]).
Theorem 2. Let \mathcal{B}_{n} be the set of Cayley partitions, where a partition of the form $\left(2^{n-1}\right)^{m_{1}}\left(2^{n-2}\right)^{m_{2}} \ldots 1^{m_{n}}$ is identified with an integer point $\left(m_{1}, m_{2}, \ldots, m_{n}\right) \in \mathbb{R}^{n}$. Now let $\boldsymbol{B}_{n}=\operatorname{conv} \mathcal{B}_{n}$. Then $\mathcal{E}_{\boldsymbol{A}_{n}}(t)=\mathcal{E}_{\boldsymbol{B}_{n}}(t)$.

In particular, when $t=1$, we obtain Cayley's theorem. Our proof is based on an explicit volumepreserving map $\varphi: \boldsymbol{B}_{n} \rightarrow \boldsymbol{A}_{n}$, which satisfies a number of interesting properties. In particular, when restricted to integer points, this map gives the bijection $\varphi: \mathcal{B}_{n} \rightarrow \mathcal{A}_{n}$ mentioned above (see Proposition 6).

In [4], Ben Braun made an interesting conjecture about the volume of \boldsymbol{A}_{n}, which was recently proved by the authors [15]. Denote by \mathcal{C}_{n} the set of connected graphs on n nodes, and let $C_{n}=\left|\mathcal{C}_{n}\right|$.

Theorem 3 (Formerly Braun's conjecture). (See [15].) Let $\mathcal{A}_{n} \subset \mathbb{R}^{n}$ be the set of Cayley compositions, and let $\boldsymbol{A}_{n}=\operatorname{conv} \mathcal{A}_{n}$ be the Cayley polytope. Then $\operatorname{vol} \boldsymbol{A}_{n}=C_{n+1} / n!$.

Combined with Theorem 2, we immediately have $\operatorname{vol} \boldsymbol{B}_{n}=\operatorname{vol} \boldsymbol{A}_{n}$, and conclude:
Corollary 4. Let \mathcal{B}_{n} be the polytope defined above. Then $\operatorname{vol} \boldsymbol{B}_{n}=C_{n+1} / n!$.
Curiously, one can also use $\operatorname{vol} \boldsymbol{B}_{n}=\operatorname{vol} \boldsymbol{A}_{n}$ in reverse, and derive Theorem 3 from Theorem 2 and known results on Stanley-Pitman polytopes (see below).

The rest of this paper is structured as follows. In Section 1 we prove Theorems 1 and 2 using an explicit bijection φ. Some applications are given in Section 2, followed by a new proof of Theorem 3 in Section 3. We finish with final remarks in Section 4.

1. Bijection construction

Recall from [4,15] (or observe directly from the definition) that Cayley polytope $\boldsymbol{A}_{n} \subset \mathbb{R}^{n}$ is defined by the following inequalities:

$$
1 \leqslant x_{1} \leqslant 2, \quad 1 \leqslant x_{2} \leqslant 2 x_{1}, \quad . ., \quad 1 \leqslant x_{n} \leqslant 2 x_{n-1} .
$$

Consider a basis

$$
\boldsymbol{e}_{1}=\left(1,2,4, \ldots, 2^{n-1}\right), \quad \boldsymbol{e}_{2}=\left(0,1,2, \ldots, 2^{n-2}\right), \quad \ldots, \quad \boldsymbol{e}_{n}=(0,0, \ldots, 1)
$$

and a map $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined as follows:

$$
\varphi\left(b_{1}, b_{2}, \ldots, b_{n}\right)=\left(2,4, \ldots, 2^{n}\right)-\sum_{i=1}^{n} b_{i} \boldsymbol{e}_{i}
$$

https://daneshyari.com/en/article/4655354

Download Persian Version:
https://daneshyari.com/article/4655354

Daneshyari.com

[^0]: E-mail address: pak@math.ucla.edu (I. Pak).
 1 Fax: +1 3102066673.

