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We prove a new formula for the generating function of multitype
Cayley trees counted according to their degree distribution. Using
this formula we recover and extend several enumerative results
about trees. In particular, we extend some results by Knuth and
by Bousquet-Mélou and Chapuy about embedded trees. We also
give a new proof of the multivariate Lagrange inversion formula.
Our strategy for counting trees is to exploit symmetries of refined
enumeration formulas: proving these symmetries is easy, and once
the symmetries are proved the formulas follow effortlessly. We
also adapt this strategy to recover an enumeration formula of
Goulden and Jackson for cacti counted according to their degree
distribution.
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1. Introduction

The enumeration of trees is a very classical subject. For instance, there is a well-known formula
for the number of unitype Cayley trees. Recall that a unitype Cayley tree with n vertices is a connected
acyclic graph with vertex set [n] = {1, . . . ,n}. There are nn−2 such trees, and there is a very simple
formula for the generating function of Cayley trees counted according to their degree distribution.
Namely, ∑

T Cayley tree
with vertex set [n]

xdeg(1)
1 xdeg(2)

2 · · · xdeg(n)
n = x1x2 · · · xn(x1 + x2 + · · · + xn)

n−2, (1)

where deg(i) is the degree of vertex i.
In this paper we consider multitype Cayley trees, that is, trees in which vertices have both a type

and a label. We obtain a formula extending (1) from the unitype setting to the multitype setting
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Fig. 1. The bijection Φ between the sets T i, j
γ and T j,i

γ ′ .

(Theorem 2). More precisely, our formula gives the generating function of rooted multitype Cayley
trees counted according to the number of children of each type of each vertex. Our formula is sur-
prisingly simple, and from it we derive many enumerative corollaries in Section 3. In particular, we
recover and extend the results of Knuth [13], and the recent results of Bousquet-Mélou and Cha-
puy [4] about “embedded trees”. We also obtain a short proof of the multivariate Lagrange inversion
formula [7] in Section 4. Our strategy for counting trees is to exploit symmetries of refined enumer-
ation formulas, and we also use this strategy in order to recover a formula of Goulden and Jackson
for counting cacti according to their degree distribution in Section 5. We mention lastly that because
we count trees according to their vertex degrees, our results could equivalently be stated in terms of
plane trees instead of Cayley trees (see Section 5 for a more detailed discussion). Also, our results can
easily be extended in order to count rooted forests (see Corollary 3).

In order to illustrate our approach for counting trees, we give a new proof of (1). There are already
many beautiful proofs of this formula including Prüfer’s code bijection [17], Joyal’s endofunction ap-
proach [12], Pitman’s double counting argument [16], the matrix-tree theorem [15, Chapter 5], and
recursive approaches [18, Chapter 5.3]. Our method is different: we start by proving the “symmetries”
in formula (1) and use them at our advantage in order to enumerate Cayley trees.

First observe that a Cayley tree with n vertices has n − 1 edges, hence the degrees of its vertices
sum to 2n − 2. Given a tuple of positive integers γ = (γ1, . . . , γn) summing to 2n − 2, we denote by
Tγ the set of Cayley trees with n vertices such that vertex i has degree γi for all i ∈ [n]. We first
claim that the cardinalities of the sets Tγ are related to one another by simple factors:

Lemma 1. Let γ = (γ1, . . . , γn) be tuple of positive integers summing to 2n − 2. Let i, j ∈ [n] and let γ ′ =
(γ ′

1, . . . , γ
′

n) be defined by γ ′
i = γi − 1, γ ′

j = γ j + 1 and γ ′
k = γk for k �= i, j. Then

(γi − 1)|Tγ | = (
γ ′

j − 1
)|Tγ ′ |.

Proof. The proof is illustrated in Fig. 1. Let T i, j
γ be the set of trees in Tγ with a marked edge incident

to vertex i not in the path between vertices i and j. Clearly |T i, j
γ | = (γi − 1)|Tγ |. Moreover, there is

an obvious bijection Φ between T i, j
γ and T j,i

γ ′ : given a marked tree T ∈ T i, j
γ , the tree Φ(T ) ∈ T j,i

γ ′ is
obtained by ungluing the marked edge from vertex i, and gluing it to vertex j. �

Using Lemma 1 repeatedly, we can express |Tγ | in terms of |Tκ |, where κ = (n − 1,1,1, . . . ,1).
Indeed,

|Tγ | = γ1(γ1 + 1) · · · (γ1 + γ2 − 2)

(γ2 − 1)! |Tγ1+γ2−1,1,γ3,...,γn |

= γ1(γ1 + 1) · · · (γ1 + γ2 + · · · + γn − n)

(γ2 − 1)! (γ3 − 1)! . . . (γn − 1)! |Tκ |

=
(

n − 2

γ1 − 1, γ2 − 1, . . . , γn − 1

)
|Tκ |. (2)
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