

Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series A

www.elsevier.com/locate/jcta

Hypergraph Turán numbers of linear cycles

Zoltán Füredi^{a,1}, Tao Jiang^b

^a Rényi Institute of Mathematics, Budapest, Hungary
^b Department of Mathematics, Miami University, Oxford, OH 45056, USA

ARTICLE INFO

Article history: Received 11 February 2013 Available online 10 January 2014

Keywords: Turán number Path Cycles Extremal hypergraphs Delta systems

ABSTRACT

A k-uniform linear cycle of length ℓ , denoted by $\mathbb{C}_{\ell}^{(k)}$, is a cyclic list of k-sets A_1, \ldots, A_ℓ such that consecutive sets intersect in exactly one element and nonconsecutive sets are disjoint. For all $k \ge 5$ and $\ell \ge 3$ and sufficiently large n we determine the largest size of a k-uniform set family on [n]not containing a linear cycle of length ℓ . For odd $\ell = 2t + 1$ the unique extremal family \mathcal{F}_S consists of all k-sets in [n]intersecting a fixed t-set S in [n]. For even $\ell = 2t + 2$, the unique extremal family consists of \mathcal{F}_S plus all the k-sets outside S containing some fixed two elements. For $k \ge 4$ and large n we also establish an exact result for so-called *minimal cycles.* For all $k \ge 4$ our results substantially extend Erdős's result on largest k-uniform families without t + 1 pairwise disjoint members and confirm, in a stronger form, a conjecture of Mubayi and Verstraëte. Our main method is the delta system method.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The delta system method is a very useful tool for set system problems. It was fully developed in a series of papers including [11] and [8]. It was successfully used for starlike configurations in [8] and [14] (see also [19] for a related result) and recently also for

E-mail addresses: z-furedi@illinois.edu (Z. Füredi), jiangt@miamioh.edu (T. Jiang).

 $^{^1}$ Research supported in part by the Hungarian National Science Foundation OTKA, and by a European Research Council Advanced Investigators Grant 267195.

larger configurations (as paths and trees) in [12] and [15]. In this paper we apply the delta system method, particularly tools from [11] and [8], to determine, for all $k \ge 5$ and large n, the Turán numbers of certain hypergraphs called *k*-uniform linear cycles. This confirms, in a stronger form, a conjecture of Mubayi and Verstraëte [24] for $k \ge 5$ and adds to the limited list of hypergraphs whose Turán numbers have been known either exactly or asymptotically.

We organize the paper as follows. Sections 2 and 3 contain definitions concerning hypergraphs. Section 4 gives a rough upper bound establishing the correct order of the magnitude. Section 6 contains the statements of the main results. Section 7 introduces the delta system method and lemmas needed for the linear cycle problem and Sections 8–10 contain proofs.

2. Definitions: shadows, degrees, delta systems

A hypergraph $\mathcal{F} = (V, \mathcal{E})$ consists of a set V of vertices and a set \mathcal{E} of edges, where each edge is a subset of V. If V has n vertices, then it is often convenient to just assume that $V = [n] = \{1, 2, ..., n\}$. Let $\binom{V}{k}$ denote the collection of all the k-subsets of V. If all the edges of \mathcal{F} are k-subsets of V, then we write $\mathcal{F} \subseteq \binom{V}{k}$ and say that \mathcal{F} is a k-uniform hypergraph, or a k-graph for brevity, on V. Note that the usual graphs are precisely 2-graphs on respective vertex sets. A hypergraph $\mathcal{F} = (V, \mathcal{E})$ is also often times called a set system or set family on V with its edges referred to as the members of the set system/family. A k-graph \mathcal{F} is k-partite if its vertex set V can be partitioned into ksubsets V_1, \ldots, V_k such that each edge of \mathcal{F} contains precisely one vertex from each V_i .

The shadow of \mathcal{F} , denoted by $\partial(\mathcal{F})$, is defined as

$$\partial(\mathcal{F}) = \{ D: \exists F \in \mathcal{F}, \ D \subsetneq F \}.$$

Here, we treat \emptyset as a member of $\partial(\mathcal{F})$. We define the *p*-shadow of \mathcal{F} to be

$$\partial_p(\mathcal{F}) = \{ D: D \in \partial(\mathcal{F}), |D| = p \}.$$

The Lovász [21] version of the Kruskal–Katona theorem states that if \mathcal{F} is a k-graph of size $|\mathcal{F}| = \binom{x}{k}$ where $x \ge k - 1$ is a real number, then for $k \ge p \ge 1$

$$\left|\partial_p(\mathcal{F})\right| \geqslant \binom{x}{p}.\tag{2.1}$$

Let \mathcal{F} be a hypergraph on [n] and $D \subseteq V(\mathcal{F})$. The degree $\deg_{\mathcal{F}}(D)$ of D in \mathcal{F} , is defined as

$$\deg_{\mathcal{F}}(D) = \big| \{F \colon F \in \mathcal{F}, \ D \subseteq F\} \big|.$$

A family of sets F_1, \ldots, F_s is said to form an *s*-star or Δ -system of size *s* with kernel *D* if $F_i \cap F_j = D$ for all $1 \leq i < j \leq s$ and $\forall i \in [s], F_i \setminus D \neq \emptyset$. The sets F_1, \ldots, F_s are Download English Version:

https://daneshyari.com/en/article/4655363

Download Persian Version:

https://daneshyari.com/article/4655363

Daneshyari.com