

Contents lists available at ScienceDirect

Journal of Combinatorial Theory, Series A

www.elsevier.com/locate/jcta

Transversals to the convex hulls of all k-sets of discrete subsets of \mathbb{R}^n

J.L. Arocha ^{a,1}, J. Bracho ^{a,1}, L. Montejano ^{a,1}, J.L. Ramírez Alfonsín ^{b,c}

ARTICLE INFO

Article history: Received 7 July 2009 Available online 24 September 2010

Keywords: Transversal λ-Helly property Kneser hypergraphs Flat center theorem

ABSTRACT

Let $k,d,\lambda\geqslant 1$ be integers with $d\geqslant \lambda$. What is the maximum positive integer n such that every set of n points in \mathbb{R}^d has the property that the convex hulls of all k-sets have a transversal $(d-\lambda)$ -plane? What is the minimum positive integer n such that every set of n points in general position in \mathbb{R}^d has the property that the convex hulls of all k-sets do not have a transversal $(d-\lambda)$ -plane? In this paper, we investigate these two questions. We define a special Kneser k1 hypergraph and, by using some topological results and the well-known k1-Helly property, we relate our second question to the chromatic number of such hypergraphs. Moreover, we establish a connection (when k1) with Kneser's conjecture, first proved by Lovász. Finally, we prove a discrete flat center theorem.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let A be a set of eight points in general position in \mathbb{R}^3 . We claim that there is no transversal line to the convex hulls of all the 4-sets of A. Otherwise, if we let L be such a transversal line and $x_0 \in A$ a point not lying on L, then the plane H through x_0 and L would contain at most three points of A and so there would be at least five points of A not in H. Therefore by the pigeon-hole principle, three of these points would lie on the same side of H. Consequently the line L would not intersect the convex hull of these three points and x_0 .

a Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F., 04510, Mexico

^b Combinatoire et Optimisation, Université Pierre et Marie Curie, Paris 6, 4 Place Jussieu, 75252 Paris Cedex 05, France

^c I3M, Université Montpellier 2, Place Eugène Bataillon, 34090 Montpellier, France

E-mail addresses: arocha@math.unam.mx (J.L. Arocha), jbracho@math.unam.mx (J. Bracho), luis@math.unam.mx (L. Montejano), jramirez@math.univ-montp2.fr (J.L. Ramírez Alfonsín).

¹ Partially supported by CONACYT. Research project 50400017.

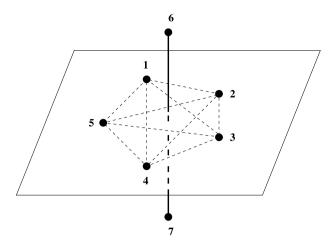


Fig. 1. $\overrightarrow{67}$ is a transversal line of all tetrahedrons.

On the other hand, if A is a set of six points in \mathbb{R}^3 , then there is always a transversal line to the convex hulls of the 4-sets of A. For this, if $x_0 \in A$, then every 4-set either contains x_0 or is contained in $A-x_0$. Moreover, the family of 4-sets of $A-x_0$ satisfies the 3-Helly property (recall that a family F of convex sets in \mathbb{R}^d has the λ -Helly property if every subfamily F' of F with size $\lambda+1$ is intersecting) and consequently there is a point y_0 in the intersection of the convex hulls of these 4-sets. Therefore the line through x_0 and y_0 is a transversal line to the convex hulls of all the 4-sets of A.

With seven points in \mathbb{R}^3 we may have both options. The suspension of a suitable pentagon with two extra points (one above and one below the pentagon) has a transversal line to the convex hulls of the 4-sets, see Fig. 1.

The construction of a set of seven points in general position without a transversal line to the convex hulls of the 4-sets is more difficult. Such construction will be discussed at the end of the paper (see Appendix A).

We define the following two functions: let $k, d, \lambda \ge 1$ be integers with $d \ge \lambda$.

 $m(k, d, \lambda) \stackrel{\text{def}}{=}$ the maximum positive integer n such that every set of n points (not necessarily in general position) in \mathbb{R}^d has the property that the convex hulls of all k-sets have a transversal $(d - \lambda)$ -plane,

and

 $M(k, d, \lambda) \stackrel{\text{def}}{=}$ the minimum positive integer n such that for every set of n points in general position in \mathbb{R}^d the convex hulls of the k-sets do not have a transversal $(d - \lambda)$ -plane.

The purpose of this paper is to study the above functions. It is clear that $m(k, d, \lambda) < M(k, d, \lambda)$, and from the above we have m(4, 3, 2) = 6 and M(4, 3, 2) = 8. In the next section, we prove the following.

Theorem 1. *Let* k, d, $\lambda \ge 1$ *be integers and* $d \ge \lambda$. *Then*

$$M(k, d, \lambda) = \begin{cases} d + 2(k - \lambda) + 1 & \text{if } k \geqslant \lambda, \\ k + (d - \lambda) + 1 & \text{if } k \leqslant \lambda. \end{cases}$$

After discussing some topological results in Section 3 and following the spirit of Dol'nikov in [4] and [5], we will introduce a special *Kneser hypergraph* and establish a close connection between its

Download English Version:

https://daneshyari.com/en/article/4655792

Download Persian Version:

https://daneshyari.com/article/4655792

<u>Daneshyari.com</u>