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In this paper we study the extremal problem of finding how many
1 entries an n by n 0–1 matrix can have if it does not contain
certain forbidden patterns as submatrices. We call the number of
1 entries of a 0–1 matrix its weight. The extremal function of a
pattern is the maximum weight of an n by n 0–1 matrix that
does not contain this pattern as a submatrix. We call a pattern
(a 0–1 matrix) linear if its extremal function is O (n). Our main
results are modest steps towards the elusive goal of characterizing
linear patterns. We find novel ways to generate new linear patterns
from known ones and use this to prove the linearity of some
patterns. We also find the first minimal non-linear pattern of
weight above 4. We also propose an infinite sequence of patterns
that we conjecture to be minimal non-linear but have Ω(n log n) as
their extremal function. We prove a weaker statement only, namely
that there are infinitely many minimal not quasi-linear patterns
among the submatrices of these matrices. For the definition of
these terms see below.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

The extremal theory of 0–1 matrices with respect to forbidden submatrices was initiated by the
papers [1,3] more than 15 years ago. It has since attracted a lot of research. Applications to combina-
torial geometry were present since the first papers, later in [7,10] this theory was applied to solve the
noted Stanley–Wilf conjecture of enumerative combinatorics. This extremal theory of matrices can be
considered as a Turán type extremal theory of bipartite graphs with a linear order on the vertices.
See more on this connection in [11] and see [2] on the related notion of convex geometric graphs.
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1.1. Definitions

We start with the basic definitions. In this paper we consider 0–1 matrices. We consider 1 entries
as representing “present” while 0 entries represent “missing”. In keeping with this we call replacing
a 1 entry by 0 in a matrix deleting that entry. We say that the 0–1 matrix A represents the same
size matrix B if B = A or B is obtained from A by deleting several 1’s. We say that a 0–1 matrix
A contains another 0–1 matrix B if a submatrix of A represents B . Notice that we do not allow the
rows or columns to be permuted and therefore containment crucially depends on the order of the
rows/columns. We say A avoids B if A does not contain B .

The weight of a 0–1 matrix P is the number of its 1 entries, denoted by w(P ). To avoid the trivial
case of an all 0 matrix (contained in every matrix of appropriate size) we define a pattern to be a 0–1
matrix of weight at least 1. Our main interest is to find the extremal function ex(n, P ) of the pattern
P for specific patterns, where ex(n, P ) is defined to be the maximal weight of an n by n 0–1 matrix
avoiding P .

1.2. Linearity

We call a pattern P linear if ex(n, P ) = O (n), otherwise P is non-linear. Characterizing linear pat-
terns is of special interest but very little is known about them. Proving a conjecture of Füredi and
Hajnal [4] Marcus and Tardos [10] show that permutation matrices are linear. By a result of Klazar
and Valtr [9] on Davenport–Schinzel sequences certain bitonic patterns are also linear (see definition
in Section 2 before Theorem 2.6). Beyond this only a few small patterns were shown to be linear
and there were a few simple reduction rules in [4,12] that implied the linearity of certain patterns
if suitable submatrices were linear. In Section 2 we establish two new reductions and use them to
prove linearity of certain patterns.

We call a pattern P minimal non-linear if it is non-linear but all patterns Q �= P contained by P
are linear. Clearly, a pattern is linear if and only if it avoids all minimal non-linear patterns.

The order of magnitude of all patterns of weight at most four was established in [4,12], so all
linear and minimal non-linear patterns are known of weight at most four. However no minimal non-
linear pattern has been known of larger weight and in fact finding such was raised in [12] as an open
problem. In Section 3 we present a minimal non-linear pattern H0 of weight 5. We establish that
ex(n, H0) = Θ(n log n). In fact, we give an infinite sequence of patterns Hi and we conjecture that each
of them is minimal non-linear. We show that they are non-linear, moreover ex(n, Hi) = Ω(n log n) but
we could not prove minimality or even that they contain infinitely many distinct minimal non-linear
patterns. Instead we introduce quasi-linearity, a relaxation of linearity, see below, and prove a similar
statement for that notion.

1.3. Quasi-linearity

We call a pattern light if it contains exactly one 1 entry in every column.
The close connection between the extremal function of light matrices and the Davenport–Schinzel

theory of sequences was first noted in a special case by Füredi and Hajnal [4] and was developed
later by Klazar. For us, the most important consequence of the connection is the following result of
Klazar [7,8].

Theorem 1.1. (See Klazar [7,8].) For any light 0–1 matrix A there exists a constant c such that

ex(n, A) � n · 2(α(n))c
.

Here α is the extremely slowly growing but unbounded inverse of Ackermann’s function. As [8] is
not easily accessible we include the simple deduction of this result from a fundamental result of [6]
in Section 2.

The above result motivates that we call quasi-linear a function f if f (n) � n · 2(α(n))c
for some c.

We call a pattern P quasi-linear if ex(n, P ) is quasi-linear. With this terminology Theorem 1.1 states
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