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1. Introduction

Let h be a function from a set A to a set B and let Cq,C,,...,C; € A be t pairwise disjoint
subsets. We say that h separates C1,Cs,...,C¢ if h(Cq),h(Cy),...,h(C;) are pairwise disjoint. Let
|[Al =n and |B| =m. We call a set H of N functions from A to B an (N;n,m)-hash family. We
say that H is an (N;n,m,{wi, wa,..., w;}) separating hash family, and we shall also write as an
SHF(N;n,m, {wq, wa, ..., w}), if for all pairwise disjoint subsets Cqy, Ca,...,C; € A with |Cj| = w;,
fori=1,2,...,t, there exists at least one function h € H that separates C1, Ca, ..., C;. The multi-
set {w1,wa,..., w;} is the type of the separating hash family. Obviously, we have 2 <t < m and
ZL] w; < n. Separating hash family with t =2 was introduced in [13] and the general case in [16].
It is worth remarking that various well-known combinatorial objects may be viewed as special cases
of separating hash families. For example, if wq =wy =-.-=w; =1, an SHF(N;n,m,{1,1,...,1}) is
called a perfect hash family which is usually denoted by PHF(N;n,m,t). Perfect hash families have
been studied extensively, see for instance, [1,3,5,9,10,12,18]. A w-frameproof code is a separating hash
family of type {1, w} [4,6,11] and a w-secure frameproof code is a separating hash family of type
{w, w} [13]. Further, a w-IPP code (code with identifiable parent property) [7,11,17], is necessarily a
PHF with t =w + 1 and an SHF of type {w, w}.

An SHF(N;n,m, {wq, wa, ..., w;}) can be depicted as an N x n array A in which the columns are
labeled by the elements of A, the rows by the functions h; € H and the (i, j)-entry of the array is the
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value h;(j). Thus, an SHF(N; n,m, {w1, wa, ..., w}) is equivalent to an N x n array with entries from
a set of m symbols such that for all disjoint sets of columns Cq, Ca,...,C; of A with |Cj| = w;, for
i=1,2,...,t, there exists at least one row r of A such that

[AG,0: xe G} N AT, y): yeCj} =0,

for all i # j. We call A the array representation or matrix representation of the hash family.

In general, for given N, m, {w1, wy, ..., w;} we want to maximize n. The determination of bounds
for n has been subject of much research recently [2,8,11,14-16].

The best known upper bounds on n for separating hash families of type {wq, w3} are the following.

Theorem 1. (See [5,11].) Suppose there exists an SHF(N; n, m, {1, w}) with w > 2. Then n < w(mr%] —-1).

Theorem 2. (See [16].) Suppose there is an SHF(N; n,m, {2, 2}). Thenn < am'51 -3,

For the special case {w1, wy, w3} = {1, 1, 2} we have the following strong bound.

Theorem 3. (See [16].) Suppose there is an SHF(N; n, m, {1, 1, 2}). Thenn < 3m/5] +2-— 2\/3m[%] + 1.

A general bound for SHF of type {wq,..., w;} has been obtained by Stinson and Zaverucha in
[14]. In [2] Blackburn, Etzion, Stinson and Zaverucha introduce a new method to establish a significant
bound for SHF of type {w1,..., w;}, which considerably improves the bound in [14], when w; > 2
foralli=1,...,t. We record this bound for SHF of type {wq, ..., w;} in the following theorem.

Theorem 4. (See [2].) Suppose an SHF(N; n,m, {w1, ..., w¢}) exists. Let u = Z§:1 wj. Then

[y |
n g ym u—T1) s

where y = (wqiwy +u — wq — w»), and wq and w; are the smallest two of the integers w;.

Note that the constant y in Theorem 4 depends on wi, wa,..., w;. If we take y = () for the
theorem, we obtain a bound derived from the graph theoretical method [2], and if we take y =
2(u — wq)wq — wq, where wq is the smallest of the integers w;, we have the bound in [14].

It should be noted that there exist further bounds for type {wi,wy} and for general type

{w1, wa, ..., w} [14,15]. However as those bounds have been improved by the bound of Theorem 4,
they are not included here.
To date, Theorem 4 presents the best known bound for SHF of general type {w1,..., w}.

In this paper we present new strong bounds for SHF which improve the Blackburn-Etzion-
Stinson-Zaverucha bound of Theorem 4.

2. Bounds for SHF of type {w1, ..., w¢}
We aim to prove the following results.
Theorem 5. Suppose there exists an SHF(N; n, m, {wq, wa}). Let u = wq + wy. Then
_ yml@n]
n<(u—1)m'@n',

Theorem 6. Let t > 3 be an integer. Suppose there exists an SHF(N;n,m, {w1, wa, ..., w¢}). Let u =
>, wi. Then

_ PN
n<(u—-1)(m-1) @' +1.
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