

Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series A

Journal of Combinatorial Theory

www.elsevier.com/locate/jcta

Bounds for separating hash families

Marjan Bazrafshan, Tran van Trung

Institut für Experimentelle Mathematik, Universität Duisburg-Essen, Ellernstrasse 29, 45326 Essen, Germany

ARTICLE INFO

Article history: Received 17 May 2010 Available online 17 November 2010

Keywords: Separating hash family Perfect hash family Frameproof code w-IPP code

ABSTRACT

This paper aims to present new upper bounds on the size of separating hash families. These bounds improve previously known bounds for separating hash families.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let *h* be a function from a set *A* to a set *B* and let $C_1, C_2, \ldots, C_t \subseteq A$ be *t* pairwise disjoint subsets. We say that *h* separates C_1, C_2, \ldots, C_t if $h(C_1), h(C_2), \ldots, h(C_t)$ are pairwise disjoint. Let |A| = n and |B| = m. We call a set \mathcal{H} of *N* functions from *A* to *B* an (N; n, m)-hash family. We say that \mathcal{H} is an $(N; n, m, \{w_1, w_2, \ldots, w_t\})$ separating hash family, and we shall also write as an SHF $(N; n, m, \{w_1, w_2, \ldots, w_t\})$, if for all pairwise disjoint subsets $C_1, C_2, \ldots, C_t \subseteq A$ with $|C_i| = w_i$, for $i = 1, 2, \ldots, t$, there exists at least one function $h \in \mathcal{H}$ that separates C_1, C_2, \ldots, C_t . The multiset $\{w_1, w_2, \ldots, w_t\}$ is the *type* of the separating hash family. Obviously, we have $2 \leq t \leq m$ and $\sum_{i=1}^t w_i \leq n$. Separating hash family with t = 2 was introduced in [13] and the general case in [16]. It is worth remarking that various well-known combinatorial objects may be viewed as special cases of separating hash families. For example, if $w_1 = w_2 = \cdots = w_t = 1$, an SHF $(N; n, m, \{1, 1, \ldots, 1\})$ is called a *perfect hash family* which is usually denoted by PHF(N; n, m, t). Perfect hash families have been studied extensively, see for instance, [1,3,5,9,10,12,18]. A *w*-frameproof code is a separating hash family of type $\{1, w\}$ [4,6,11] and a *w*-secure frameproof code is a separating hash family of type $\{w, w\}$ [13]. Further, a *w*-IPP code (code with identifiable parent property) [7,11,17], is necessarily a PHF with t = w + 1 and an SHF of type $\{w, w\}$.

An SHF(N; n, m, { w_1 , w_2 , ..., w_t }) can be depicted as an $N \times n$ array \mathcal{A} in which the columns are labeled by the elements of A, the rows by the functions $h_i \in \mathcal{H}$ and the (i, j)-entry of the array is the

0097-3165/\$ – see front matter $\,\, \odot$ 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.jcta.2010.11.006

E-mail addresses: marjan@iem.uni-due.de (M. Bazrafshan), trung@iem.uni-due.de (T. van Trung).

value $h_i(j)$. Thus, an SHF($N; n, m, \{w_1, w_2, ..., w_t\}$) is equivalent to an $N \times n$ array with entries from a set of m symbols such that for all disjoint sets of columns $C_1, C_2, ..., C_t$ of \mathcal{A} with $|C_i| = w_i$, for i = 1, 2, ..., t, there exists at least one row r of \mathcal{A} such that

$$\left\{\mathcal{A}(r,x): x \in C_i\right\} \cap \left\{\mathcal{A}(r,y): y \in C_i\right\} = \emptyset,$$

for all $i \neq j$. We call A the array representation or matrix representation of the hash family.

In general, for given N, m, $\{w_1, w_2, ..., w_t\}$ we want to maximize n. The determination of bounds for n has been subject of much research recently [2,8,11,14–16].

The best known upper bounds on *n* for separating hash families of type $\{w_1, w_2\}$ are the following.

Theorem 1. (See [5,11].) Suppose there exists an SHF(N; n, m, $\{1, w\}$) with $w \ge 2$. Then $n \le w(m^{\lceil \frac{N}{w} \rceil} - 1)$.

Theorem 2. (See [16].) Suppose there is an SHF(N; n, m, {2, 2}). Then $n \leq 4m^{\lceil \frac{N}{3} \rceil} - 3$.

For the special case $\{w_1, w_2, w_3\} = \{1, 1, 2\}$ we have the following strong bound.

Theorem 3. (See [16].) Suppose there is an SHF(N; $n, m, \{1, 1, 2\}$). Then $n \leq 3m^{\lceil \frac{N}{3} \rceil} + 2 - 2\sqrt{3m^{\lceil \frac{N}{3} \rceil} + 1}$.

A general bound for SHF of type $\{w_1, ..., w_t\}$ has been obtained by Stinson and Zaverucha in [14]. In [2] Blackburn, Etzion, Stinson and Zaverucha introduce a new method to establish a significant bound for SHF of type $\{w_1, ..., w_t\}$, which considerably improves the bound in [14], when $w_i \ge 2$ for all i = 1, ..., t. We record this bound for SHF of type $\{w_1, ..., w_t\}$ in the following theorem.

Theorem 4. (See [2].) Suppose an SHF(N; n, m, $\{w_1, \ldots, w_t\}$) exists. Let $u = \sum_{i=1}^t w_i$. Then

$$n \leq \gamma m^{\lceil \frac{N}{(u-1)} \rceil}$$

where $\gamma = (w_1w_2 + u - w_1 - w_2)$, and w_1 and w_2 are the smallest two of the integers w_i .

Note that the constant γ in Theorem 4 depends on w_1, w_2, \ldots, w_t . If we take $\gamma = \binom{u}{2}$ for the theorem, we obtain a bound derived from the graph theoretical method [2], and if we take $\gamma = 2(u - w_1)w_1 - w_1$, where w_1 is the smallest of the integers w_i , we have the bound in [14].

It should be noted that there exist further bounds for type $\{w_1, w_2\}$ and for general type $\{w_1, w_2, ..., w_t\}$ [14,15]. However as those bounds have been improved by the bound of Theorem 4, they are not included here.

To date, Theorem 4 presents the best known bound for SHF of general type $\{w_1, \ldots, w_t\}$.

In this paper we present new strong bounds for SHF which improve the Blackburn-Etzion-Stinson-Zaverucha bound of Theorem 4.

2. Bounds for SHF of type $\{w_1, \ldots, w_t\}$

We aim to prove the following results.

Theorem 5. Suppose there exists an SHF(N; n, m, { w_1 , w_2 }). Let $u = w_1 + w_2$. Then

$$n \leq (u-1)m^{\left\lceil \frac{N}{(u-1)} \right\rceil}$$

Theorem 6. Let $t \ge 3$ be an integer. Suppose there exists an SHF $(N; n, m, \{w_1, w_2, ..., w_t\})$. Let $u = \sum_{i=1}^{t} w_i$. Then

$$n \leq (u-1)(m-1)^{\lceil \frac{N}{(u-1)} \rceil} + 1.$$

Download English Version:

https://daneshyari.com/en/article/4656137

Download Persian Version:

https://daneshyari.com/article/4656137

Daneshyari.com