

Contents lists available at ScienceDirect

Journal of Combinatorial Theory, Series A

www.elsevier.com/locate/jcta

Note

On the size of identifying codes in binary hypercubes

Svante Janson a, Tero Laihonen b, 1

ARTICLE INFO

Article history: Received 18 April 2008 Available online 28 March 2009

Keywords: Identifying code Optimal rate Hypercube Fault diagnosis

ABSTRACT

In this paper, we consider identifying codes in binary Hamming spaces \mathbb{F}^n , i.e., in binary hypercubes. The concept of $(r,\leqslant\ell)$ -identifying codes was introduced by Karpovsky, Chakrabarty and Levitin in 1998. Currently, the subject forms a topic of its own with several possible applications, for example, to sensor networks. Let us denote by $M_r^{(\leqslant\ell)}(n)$ the smallest possible cardinality of an $(r,\leqslant\ell)$ -identifying code in \mathbb{F}^n . In 2002, Honkala and Lobstein showed for $\ell=1$ that

$$\lim_{n\to\infty} \frac{1}{n} \log_2 M_r^{(\leqslant \ell)}(n) = 1 - h(\rho),$$

where $r=\lfloor \rho n\rfloor$, $\rho\in [0,1)$ and h(x) is the binary entropy function. In this paper, we prove that this result holds for any fixed $\ell\geqslant 1$ when $\rho\in [0,1/2)$. We also show that $M_r^{(\leqslant\ell)}(n)=O\left(n^{3/2}\right)$ for every fixed ℓ and r slightly less than n/2, and give an explicit construction of small $(r,\leqslant 2)$ -identifying codes for $r=\lfloor n/2\rfloor-1$. © 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let $\mathbb{F} = \{0,1\}$ be the binary field and denote by \mathbb{F}^n the n-fold Cartesian product of it, i.e., the Hamming space. We denote by $A \triangle B$ the *symmetric difference* $(A \setminus B) \cup (B \setminus A)$ of two sets A and B. The (*Hamming*) *distance* d(x,y) between the vectors (called words) $x,y \in \mathbb{F}^n$ is the number of coordinate places in which they differ, i.e., $x(i) \neq y(i)$ for $i=1,2,\ldots,n$. The *support* of $x = (x(1),x(2),\ldots,x(n)) \in \mathbb{F}^n$ is defined by $\sup (x) = \{i \mid x(i) = 1\}$. The *complement* of a word $x \in \mathbb{F}^n$, denoted by \bar{x} , is the word for which $\sup (\bar{x}) = \{1,2,\ldots,n\} \setminus \sup (x)$. Denote by 0 the word where all the coordinates equal zero, and by 1 the all-one word. Clearly $\bar{0} = 1$. The (*Hamming*) weight w(x)

^a Department of Mathematics, Uppsala University, PO Box 480, SE-751 06 Uppsala, Sweden

^b Department of Mathematics, University of Turku, FIN-20014 Turku, Finland

E-mail address: terolai@utu.fi (T. Laihonen).

¹ Research supported by the Academy of Finland under grant 111940.

of a word $x \in \mathbb{F}^n$ is defined by $w(x) = d(x, 0) = |\operatorname{supp}(x)|$. We say that x *r*-covers y if $d(x, y) \le r$ (if x *r*-covers y, then also y *r*-covers x). The (Hamming) ball of radius r centered at $x \in \mathbb{F}^n$ is

$$B_r(x) = \left\{ y \in \mathbb{F}^n \mid d(x, y) \leqslant r \right\}$$

and its cardinality is denoted by V(n,r). For $X \subseteq \mathbb{F}^n$, denote

$$B_r(X) = \bigcup_{y \in Y} B_r(x) = \left\{ y \in \mathbb{F}^n \mid d(y, X) \leqslant r \right\}.$$

We also use the notation

$$S_r(x) = \{ y \in \mathbb{F}^n \mid d(x, y) = r \}.$$

A nonempty subset $C \subseteq \mathbb{F}^n$ is called a *code* and its elements are *codewords*. Let C be a code and $X \subseteq \mathbb{F}^n$. We denote (the codeword r-neighbourhood of X by)

$$I_r(X) = I_r(C; X) = B_r(X) \cap C.$$

We write for short $I_r(C; \{x_1, ..., x_k\}) = I_r(x_1, ..., x_k)$.

Definition 1. Let r and ℓ be non-negative integers. A code $C \subseteq \mathbb{F}^n$ is said to be $(r, \leqslant \ell)$ -identifying if for all $X, Y \subseteq \mathbb{F}^n$ such that $|X| \leqslant \ell$, $|Y| \leqslant \ell$ and $X \neq Y$ we have

$$I_r(C; X) \neq I_r(C; Y)$$
.

The idea of the identifying codes is that given the set $I_r(X)$ we can uniquely determine the set $X \subset \mathbb{F}^n$ as long as $|X| \leq \ell$.

The seminal paper [15] by Karpovsky, Chakrabarty and Levitin initiated research in identifying codes, and it is nowadays a topic of its own with different types of problems studied, see, e.g., [2,4–6,11,12,20,22]; for an updated bibliography of identifying codes see [19]. Originally, identifying codes were designed for finding malfunctioning processors in multiprocessor systems (such as binary hypercubes, i.e., binary Hamming spaces); in this application we want to determine the set of malfunctioning processors X of size at most ℓ when the only information available is the set $I_r(C; X)$ provided by the code C. A natural goal there is to use identifying codes which are as small as possible. The theory of identification can also be applied to sensor networks, see [21]. Small identifying codes are needed for energy conservation [16]. For other applications we refer to [17].

The smallest possible cardinality of an $(r, \leq \ell)$ -identifying code in \mathbb{F}^n is denoted by $M_r^{(\leq \ell)}(n)$.

Let $h(x) = -x \log_2 x - (1-x) \log_2 (1-x)$ be the binary entropy function and $\rho \in [0,1)$ be a constant. Let further $r = |\rho n|$. Honkala and Lobstein showed in [14] that, when $\ell = 1$, we have

$$\lim_{n \to \infty} \frac{1}{n} \log_2 M_r^{(\leqslant 1)}(n) = 1 - h(\rho). \tag{1}$$

The lower bound that is part of (1) comes from the simple observation that if C is an $(r, \leqslant \ell)$ -identifying code for any $\ell \geqslant 1$, then necessarily $B_r(C) = \mathbb{F}^n$ (otherwise there would be a word $x \notin B_r(C)$ and then $I_r(x) = \emptyset = I_r(\emptyset)$, so $\{x\}$ and \emptyset cannot be distinguished by C) and also $|\mathbb{F}^n \setminus B_{n-r-1}(C)| \leqslant 1$ (otherwise there would be two words $x, y \notin B_{n-r-1}(C)$ and then $I_r(\bar{x}) = C = I_r(\bar{y})$, so $\{\bar{x}\}$ and $\{\bar{y}\}$ cannot be distinguished by C); consequently, for any $n, r, \ell \geqslant 1$,

$$M_r^{(\leqslant \ell)}(n) \geqslant M_r^{(\leqslant 1)}(n) \geqslant \max\left(\frac{2^n}{|V(n,r)|}, \frac{2^n - 1}{|V(n,n-r-1)|}\right)$$

$$= \max\left(\frac{2^n}{\sum_{i=0}^r \binom{n}{i}}, \frac{2^n - 1}{\sum_{i=0}^{n-r-1} \binom{n}{i}}\right)$$
(2)

and the lower bound in (1) follows from Stirling's formula. Cf. [7, Chapter 12], [3,10,14,15] for this and similar arguments and related estimates.

Download English Version:

https://daneshyari.com/en/article/4656215

Download Persian Version:

https://daneshyari.com/article/4656215

<u>Daneshyari.com</u>