

Available online at www.sciencedirect.com

Journal of Combinatorial Theory Series A

Journal of Combinatorial Theory, Series A 113 (2006) 1061-1071

www.elsevier.com/locate/jcta

The Eulerian distribution on involutions is indeed unimodal

Victor J.W. Guo, Jiang Zeng

Institut Camille Jordan, Université Claude Bernard (Lyon I), F-69622, Villeurbanne Cedex, France Received 10 April 2005

Available online 17 November 2005

Abstract

Let $I_{n,k}$ (respectively $J_{n,k}$) be the number of involutions (respectively fixed-point free involutions) of $\{1, \ldots, n\}$ with k descents. Motivated by Brenti's conjecture which states that the sequence $I_{n,0}, I_{n,1}, \ldots, I_{n,n-1}$ is log-concave, we prove that the two sequences $I_{n,k}$ and $J_{2n,k}$ are unimodal in k, for all n. Furthermore, we conjecture that there are nonnegative integers $a_{n,k}$ such that

$$\sum_{k=0}^{n-1} I_{n,k} t^k = \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} a_{n,k} t^k (1+t)^{n-2k-1}$$

This statement is stronger than the unimodality of $I_{n,k}$ but is also interesting in its own right. © 2005 Elsevier Inc. All rights reserved.

Keywords: Involutions; Descent number; Unimodality; Eulerian polynomial; Zeilberger's algorithm

1. Introduction

A sequence a_0, a_1, \ldots, a_n of real numbers is said to be *unimodal* if for some $0 \le j \le n$ we have $a_0 \le a_1 \le \cdots \le a_j \ge a_{j+1} \ge \cdots \ge a_n$, and is said to be *log-concave* if $a_i^2 \ge a_{i-1}a_{i+1}$ for all $1 \le i \le n-1$. Clearly a log-concave sequence of *positive* terms is unimodal. The reader is referred to Stanley's survey [10] for the surprisingly rich variety of methods to show that a sequence is log-concave or unimodal. As noticed by Brenti [2], even though log-concavity and unimodality have one-line definitions, to prove the unimodality or log-concavity of a sequence

0097-3165/\$ – see front matter $\,$ © 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jcta.2005.10.002

E-mail addresses: guo@math.univ-lyon1.fr (V.J.W. Guo), zeng@math.univ-lyon1.fr (J. Zeng).

URLs: http://math.univ-lyon1.fr/~guo (V.J.W. Guo), http://math.univ-lyon1.fr/~zeng (J. Zeng).

can sometimes be a very difficult task requiring the use of intricate combinatorial constructions or of refined mathematical tools.

Let \mathfrak{S}_n be the set of all permutations of $[n] := \{1, \ldots, n\}$. We say that a permutation $\pi = a_1 a_2 \cdots a_n \in \mathfrak{S}_n$ has a *descent* at i $(1 \le i \le n-1)$ if $a_i > a_{i+1}$. The number of descents of π is called its descent number and is denoted by $d(\pi)$. A statistic on \mathfrak{S}_n is said to be *Eulerian*, if it is equidistributed with the descent number statistic. Recall that the polynomial

$$A_n(t) = \sum_{\pi \in \mathfrak{S}_n} t^{1+d(\pi)} = \sum_{k=1}^n A(n,k) t^k$$

is called an *Eulerian polynomial*. It is well known that the *Eulerian numbers* A(n, k) $(1 \le k \le n)$ form a unimodal sequence, of which several proofs have been published: such as the analytical one by showing that the polynomial $A_n(t)$ has only real zeros [3, p. 294], by induction based on the recurrence relation of A(n, k) (see [9]), or by combinatorial techniques (see [7,11]).

Let \mathcal{I}_n be the set of all involutions in \mathfrak{S}_n and \mathcal{J}_n the set of all fixed-point free involutions in \mathfrak{S}_n . Define

$$I_n(t) = \sum_{\pi \in \mathcal{I}_n} t^{d(\pi)} = \sum_{k=0}^{n-1} I_{n,k} t^k,$$
$$J_n(t) = \sum_{\pi \in \mathcal{J}_n} t^{d(\pi)} = \sum_{k=0}^{n-1} J_{n,k} t^k.$$

The first values of these polynomials are given in Table 1.

As one may notice from Table 1 that the coefficients of $I_n(t)$ and $J_n(t)$ are symmetric and unimodal for $1 \le n \le 6$. Actually, the symmetries had been conjectured by Dumont and were first proved by Strehl [12]. Recently, Brenti (see [5]) conjectured that the coefficients of the polynomial $I_n(t)$ are log-concave and Dukes [5] has obtained some partial results on the unimodality of the coefficients of $I_n(t)$ and $J_{2n}(t)$. Note that, in contrast to Eulerian polynomials $A_n(t)$, the polynomials $I_n(t)$ and $J_{2n}(t)$ may have nonreal zeros.

In this paper we will prove that for $n \ge 1$, the two sequences $I_{n,0}, I_{n,1}, \ldots, I_{n,n-1}$ and $J_{2n,1}, J_{2n,2}, \ldots, J_{2n,2n-1}$ are unimodal. Our starting point is the known generating functions of polynomials $I_n(t)$ and $J_n(t)$:

$$\sum_{n=0}^{\infty} I_n(t) \frac{u^n}{(1-t)^{n+1}} = \sum_{r=0}^{\infty} \frac{t^r}{(1-u)^{r+1}(1-u^2)^{r(r+1)/2}},$$
(1.1)

$$\sum_{n=0}^{\infty} J_n(t) \frac{u^n}{(1-t)^{n+1}} = \sum_{r=0}^{\infty} \frac{t^r}{(1-u^2)^{r(r+1)/2}},$$
(1.2)

Table 1

The polynomials	$I_n(t)$	and J_I	n(t)	for n	≤6
-----------------	----------	-----------	------	-------	----

n	$I_n(t)$	$J_n(t)$
1	1	0
2	1+t	t
3	$1 + 2t + t^2$	0
4	$1 + 4t + 4t^2 + t^3$	$t + t^2 + t^3$
5	$1 + 6t + 12t^2 + 6t^3 + t^4$	0
6	$1 + 9t + 28t^2 + 28t^3 + 9t^4 + t^5$	$t + 3t^2 + 7t^3 + 3t^4 + t^5$

1062

Download English Version:

https://daneshyari.com/en/article/4656428

Download Persian Version:

https://daneshyari.com/article/4656428

Daneshyari.com